

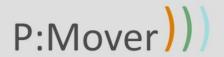
aufgrund eines Beschlusses des Deutschen Bundestages

<u>Pionierregion: Mobilitätslösungen im suburbanen Raum vernetzen – P:Mover</u>

Abschlussveranstaltung

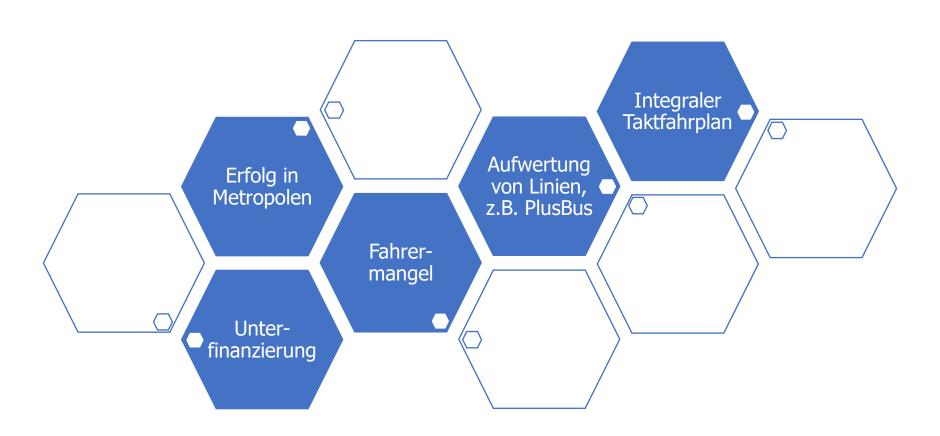
27.11.2024

EAZ 1337/1338



Agenda

10:00 – 10:30	Eröffnung und Grußworte	
10:30 – 11:00	Keynote 1 "Funktion von automatisierten Fahrzeugen im ÖPNV- System"	Constantin Pitzen, Fahrplangesellschaft, Mitglied im Netzwerk "Büro autoBus"
11:00 – 11:30	Keynote 2 "Innovative Betriebskonzepte für automatisiertes ÖPNV auf der Straße	Tim Alscher, IAV GmbH
11:30 – 12:00	Keynote 3 "5G-Mobilfunk aus strahlenschutztechnischer Sicht"	Dr. Christian Bornkessel, TU Ilmenau und Mitglied der Deutschen Strahlenschutzkommission
12:00 – 13:00	Mittagspause (Fingerfood)	
13:00 – 14:30	Ausgewählte Präsentationen aus dem P:Mover Projekt	
	 → Projektvorstellung und Öffentlichkeitsarbeit → Wissenschaftliche Domäne: Projektinhalte und Ergebnisse → Projektpartner Funkwerk: Entwicklungsprojekt P: Mover → Mobiles Messsystem und KI-basierte Datenauswertung 	Berk Altinel und Arne Martius, Stadt IL Lisa-Marie Schilling, ThIMo und TU Ilmenau Thomas Rohn und Jens Köcher, Funkwerk Systems GmbH Ronny Stricker, Lehmann + Partner GmbH
14:30 – 15:15	Kaffee, Networking und Posterausstellung	
15:15 – 16:30	Demonstrationen	



Die Revolution durch autonome Fahrzeuge steht bevor.

erste Straßen-Zulassung reale auto-Projekte Level 4 Verkehrsmatisierte Anwenmit (fahrerloses Level-2gesetz dungen Erprobung im ÖPNV Shuttle Richtlinie fahren) Level 4

Megatrends im ÖPNV räumlich differenziert

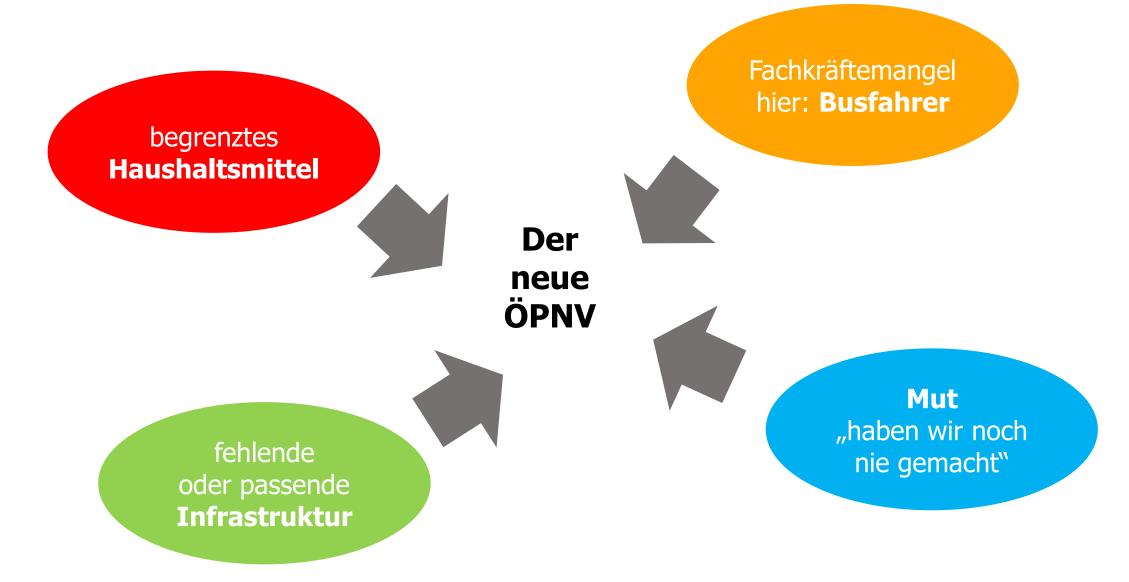
Trend- und Alternativszenario

heute

Fahrplan
nachfrageorientiert
mit sehr großen
Qualitätsunterschieden

Trendszenario

weiterer Abbau im Fahrplan Fahrplan ÖPNV bedarfsbezogen


weiterer Verlust an Fahrgästen

Szenario ITF

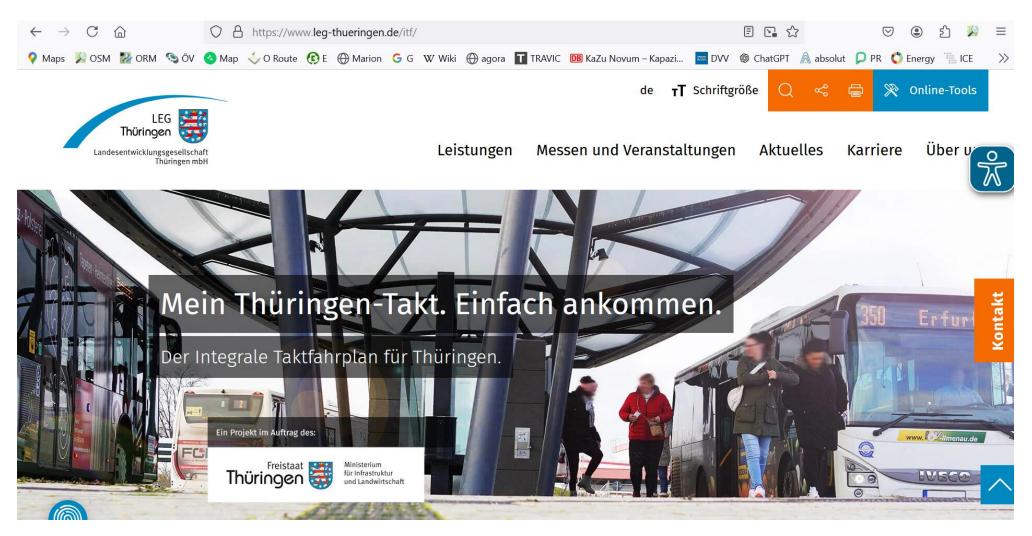
Knoten und Differenzierung Begrenzung Kostenaufwuchs durch ITF

ÖPNV angebots-orientiert

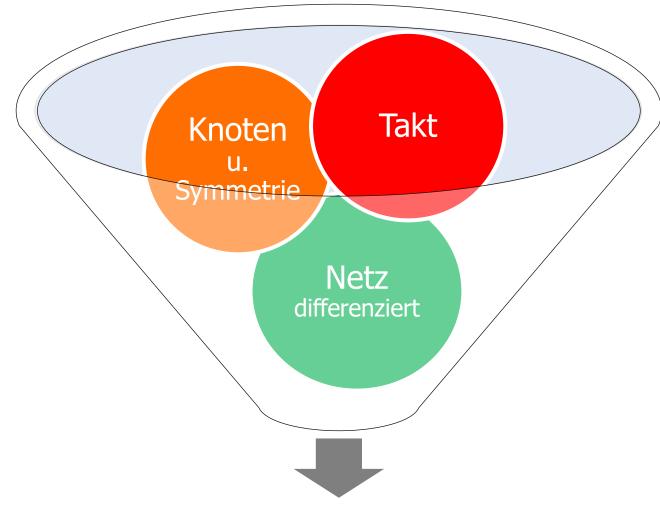
Herausforderungen für den ÖPNV

Definition

Verkehrswende



Mobilitätswende


Antriebswende

Thüringen auf dem Weg zum Integralen Taktfahrplan

Erarbeitung Rahmenplan und Umsetzungsplanung in der Modellregion und Fokusregion durch Fahrplangesellschaft und Mobile Zeiten im Auftrag der LEG Thüringen

Werkzeugkoffer

Arbeitsweise:

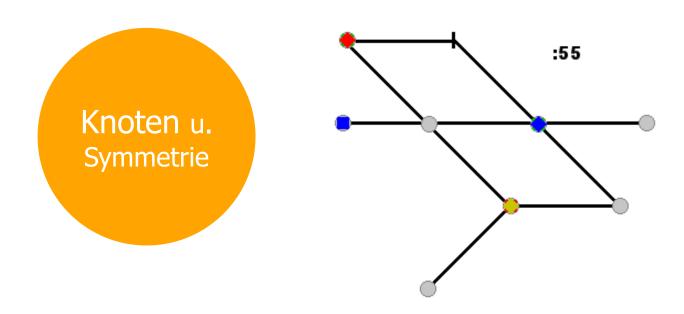
bodenständig ingenieurmäßig umsetzungsorientiert keine Luftschlösser

Integraler Taktfahrplan

Werkzeugkoffer

Taktverkehr (Fahrplanzeiten mit wiederkehrenden Minuten)

Taktfamilie 15 / 30 / 60 / 120 sinnvoll


Takt ermöglicht Skalierung und Herstellung von Anschlüssen (Nutzbarkeit)

Wie sieht es in Thüringen aus?

In den meisten Landkreiesen landesbedeutsame Linien im 2-Stundentakt, teilweise Linien im Stundentakt vorhanden

215	Rudo	lstadt	- Kör	igsee	- Ilm	enau													
	Montag bis Freitag																		
Fahrtnr.	25	29	31	33	35	39	211	41	213	215	43	37	45	217	49	47	219	53	51
Anmerkungen	K		1		F	1	S		S	S	S	F	1	S	S	F	S	S	F
Gültigkeitstage	5				5	_													
Rudolstadt ZOB/RHerzer-Pl.Hst.5		8.58		10.58				11.58			12.50	12.58			13.50	13.58		14.50	14.58
Rudolstadt CSchulte-Straße		9.01		11.01				12.01			12.53	13.01			13.53	14.01		14.53	15.01
Rudolstadt Bayreuther Platz		9.02		11.02				12.02			12.54	13.02			13.54	14.02		14.54	15.02
Rudolstadt Ärztehaus		9.03		11.03				12.03			12.55	13.03			13.55	14.03		14.55	15.03
Rudolstadt Rudolspark		9.04		11.04				12.04			12.56	13.04			13.56	14.04		14.56	15.04
Rudolstadt Ankerwerk		9.05		11.05				12.05			12.57	13.05			13.57	14.05		14.57	15.05
Rudolstadt Gustav-Freytag-Str.		9.07		11.07				12.07			12.59	13.07			13.59	14.07		14.59	15.07
Rudolstadt SAALEMAXX		9.08		11.08				12.08			13.00	13.08			14.00	14.08		15.00	15.08
Rudolstadt Hugo-Trinckler-Str.		9.09		11.09				12.09			13.01	13.09			14.01	14.09		15.01	15.09
Volkstedt Breitscheid. Ersatz		(((13.07	(14.07	(15.07	(
Volkstedt-West Corrensring 1											13.08				14.08	(15.08	\ \ \
Volkstedt-West Corrensring 2		((13.09				14.09	(15.09	\
Schwarza-Nord				(13.10				14.10			15.10	
Schwarza Fröbelstraße		(((13.12				14.12			15.12	\
Schwarza Volksbank		9.14		11.14				12.14			13.14	13.14			14.14	14.14		15.14	15.14
Schwarza Dreiklang/Milchhof		9.16		11.16				12.16			13.16	13.16			14.16	14.16		15.16	15.16
Bad Blankenburg Transportgummi		9.19		11.19				12.19			13.19	13.19			14.19	14.19		15.19	15.19
Bad Blankenburg Bahnhofstr.		9.21	10.21	11.21		11.37		12.21			13.21	13.21	13.37		14.21	14.21		15.21	15.21
Bad Blankenburg Stadtmühle		9.23	10.23	11.23		11.39		12.23			13.23	13.23	13.39		14.23	14.23		15.23	15.23
Bad Blankenburg Tankstelle		9.25	10.25	11.25		11.41		12.25			13.25	13.25	13.41		14.25	14.25		15.25	15.25
Watzdorf		9.27	10.27	11.27		11.43		12.27			13.27	13.27	13.43		14.27	14.27		15.27	15.27
Leutnitz B 88		9.29	10.29	11.29		11.45		12.29			13.29	13.29	13.45		14.29	14.29		15.29	15.29
Quittelsdorf B 88		9.30	10.30	11.30		11.46		12.30			13.30	13.30	13.46		14.30	14.30		15.30	15.30
Quittelsdorf Ort													(14.50		
Milbitz/Rottenbach									11.59										
Rottenbach Schule			(((12.02				((((
		9.26	10.26	11.26				12.26			13.26	13.26			14.26	14.26		15.26	15.26
Rottenbach Bahnhof		9.34	10.34	11.34		11.50		12.34			13.34	13.34	13.50		14.34	14.34	14.54	15.34	15.34
Rottenbach B 88		9.36	10.36	11.36		11.52		12.36			13.36	13.36	13.52		14.36	14.36		15.36	15.36
Rottenbach Plastunion		9.37	10.37	11.37		11.53		12.37	12.05		13.37	13.37	13.53		14.37	14.37		15.37	15.37
Unterköditz		9.39	10.39	11.39		11.55		12.39	12.07		13.39	13.39	13.55		14.39	14.39		15.39	15.39
Oberköditz Alte Schule		9.40	10.40	11.40		11.56		12.40	12.08		13.40	13.40	13.56		14.40	14.40		15.40	15.40
Oberköditz		9.41	10.41	11.41		11.57		12.41	12.09		13.41	13.41	13.57		14.41	14.41	(15.41	15.41
Horba	8.25																		(

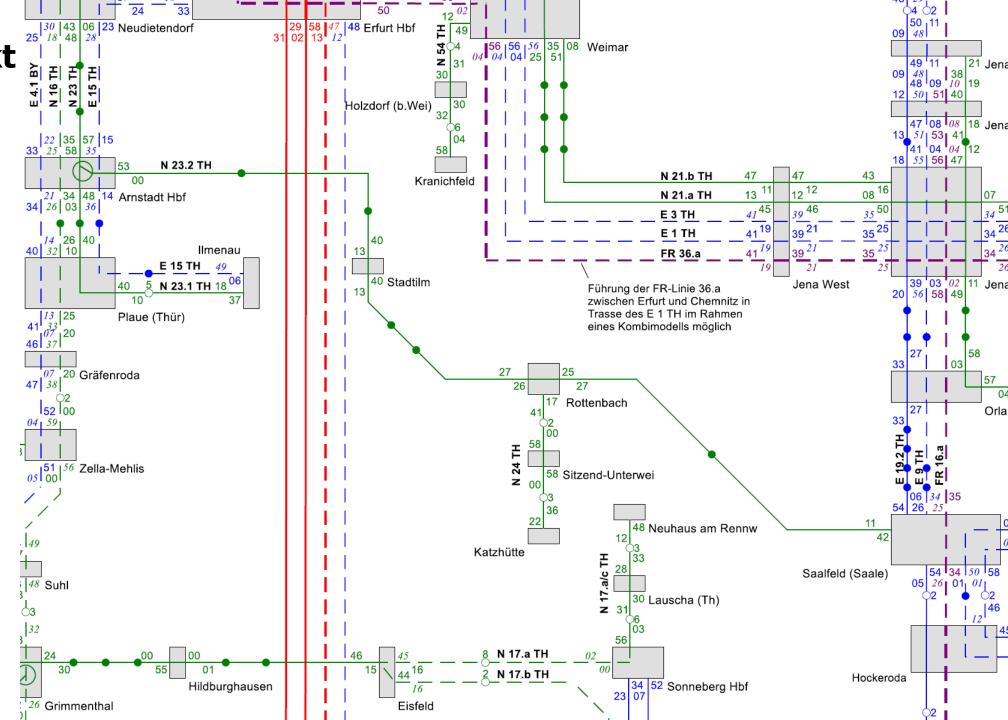
Werkzeugkoffer

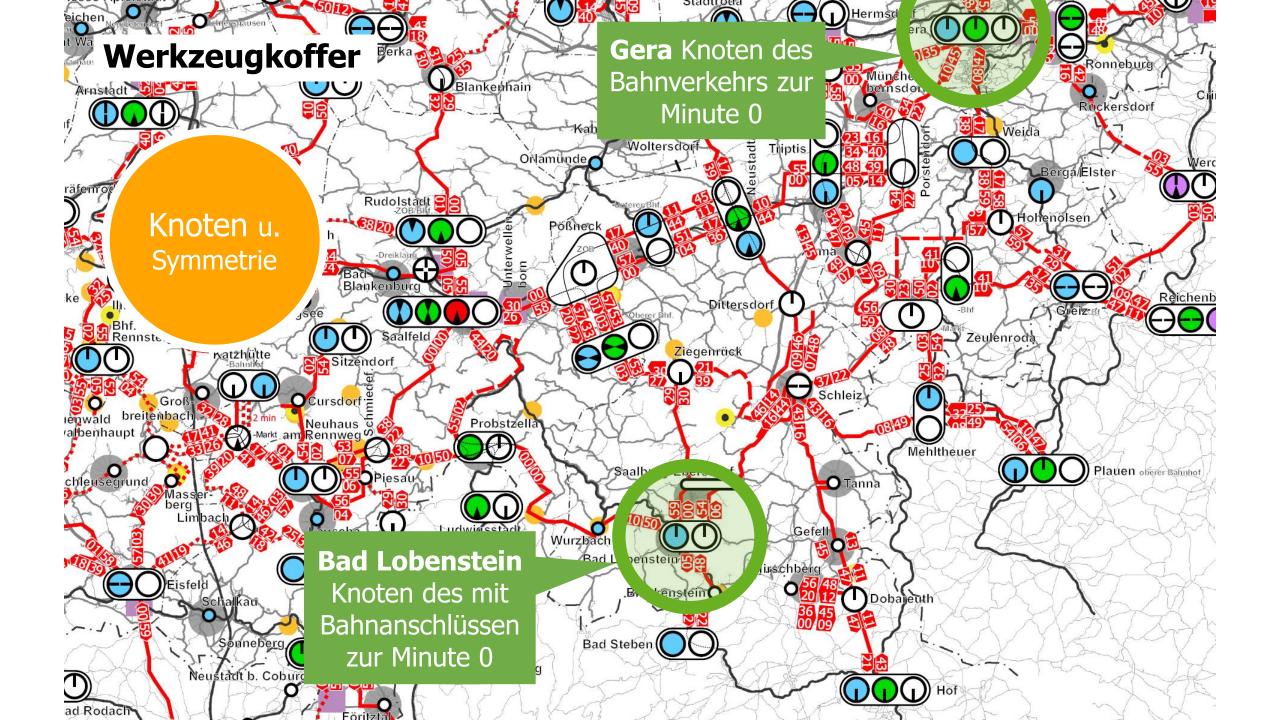
Merkmale des ITF

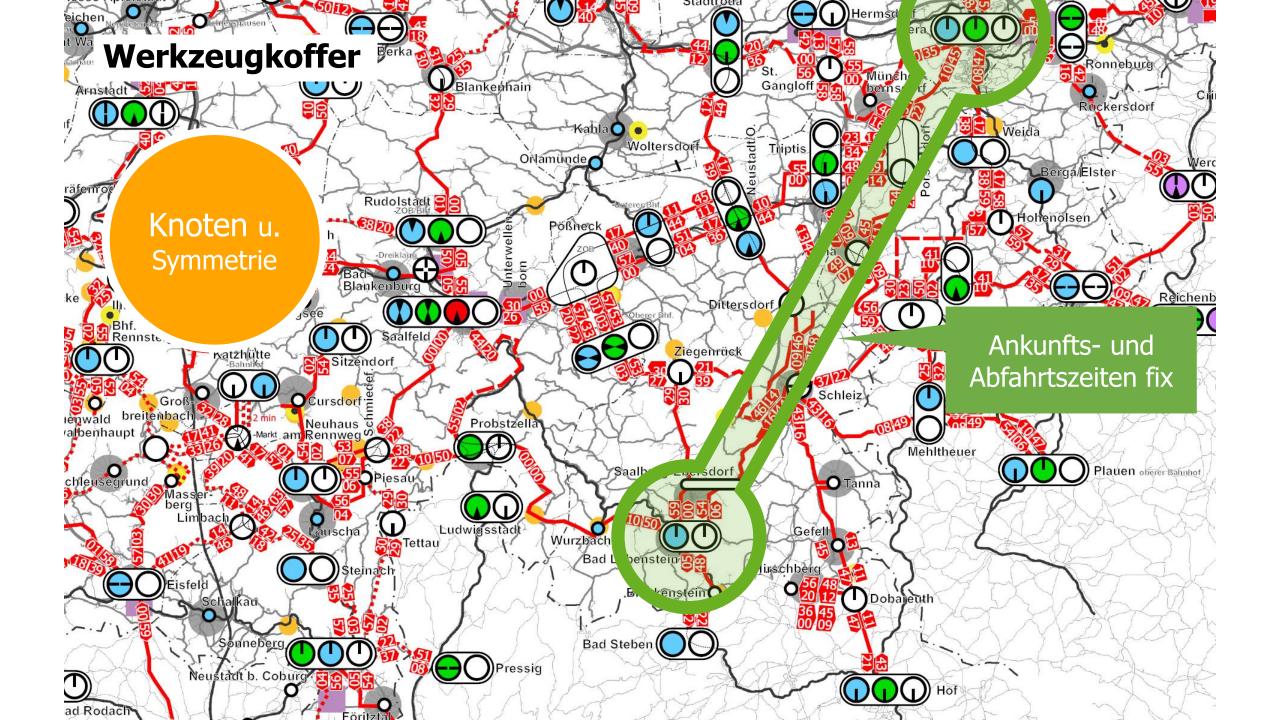
- 1. Taktfahrpläne
- 2. Fahrplansymmetrie
- 3. Ausrichtung an Knoten

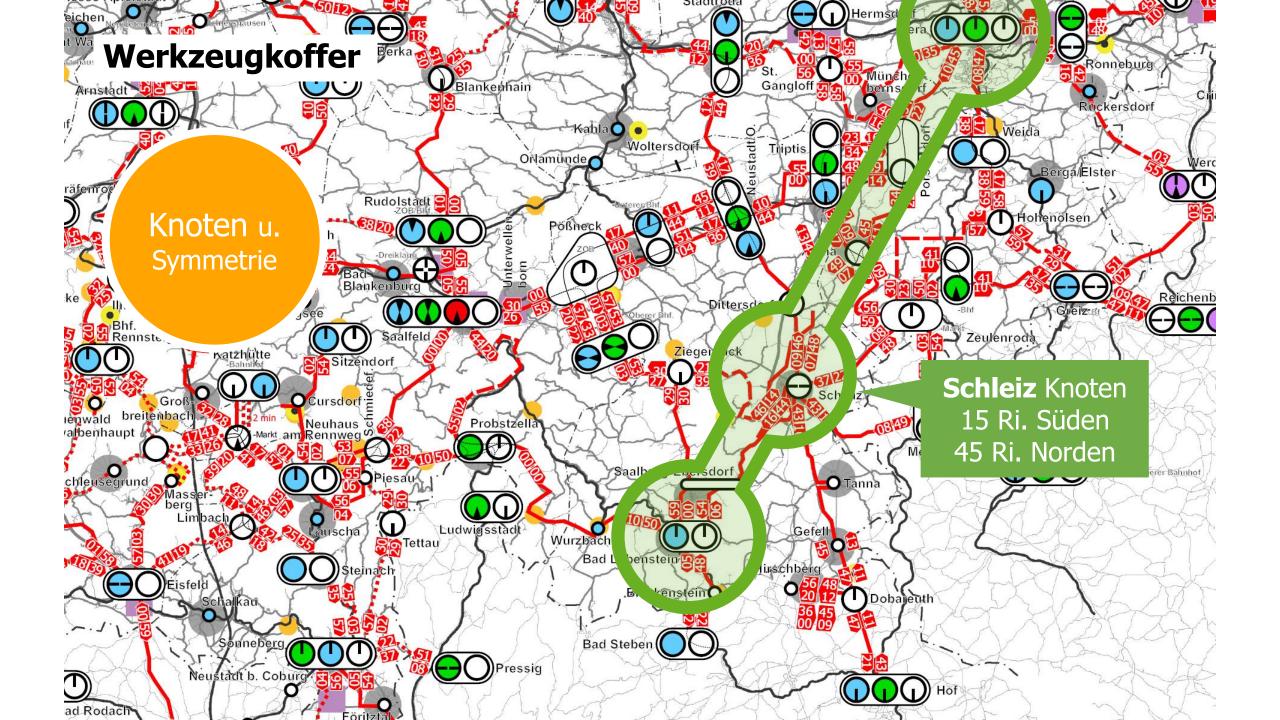
Folge: Änderungen für Fahrgäste, auch Schüler

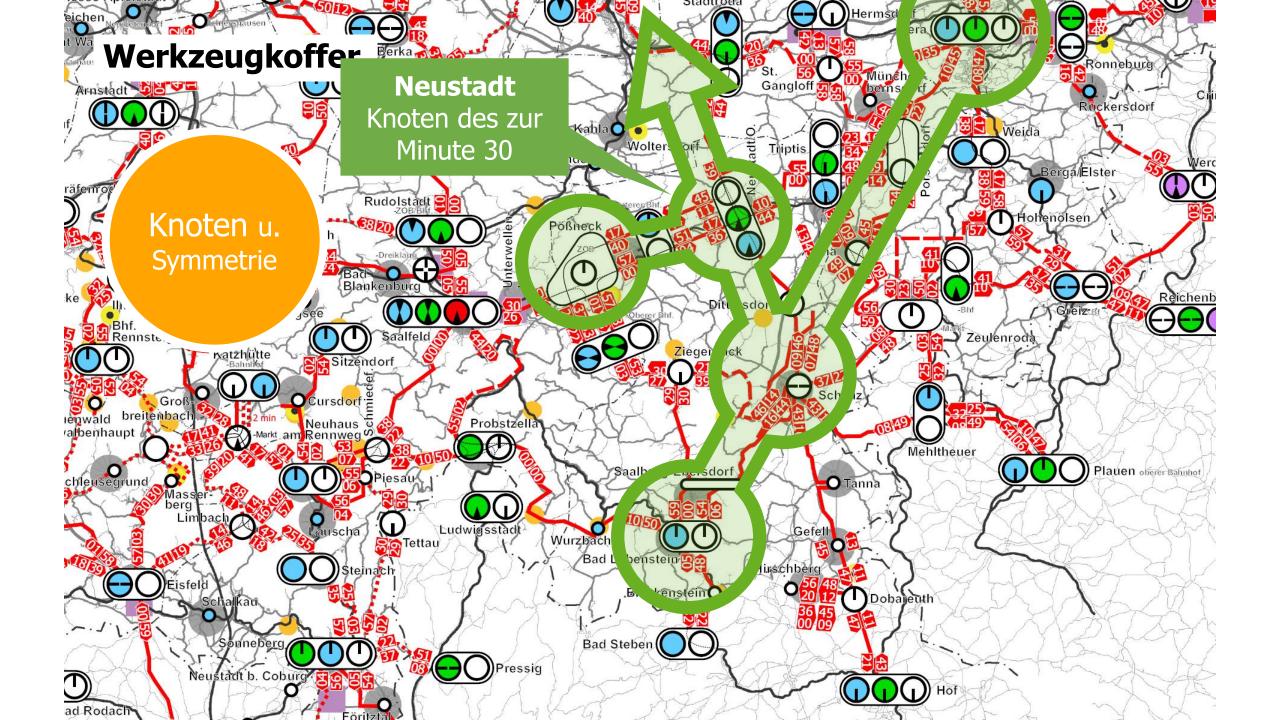
Wirkung: Attraktivität, Skalierbarkeit, Effizienz

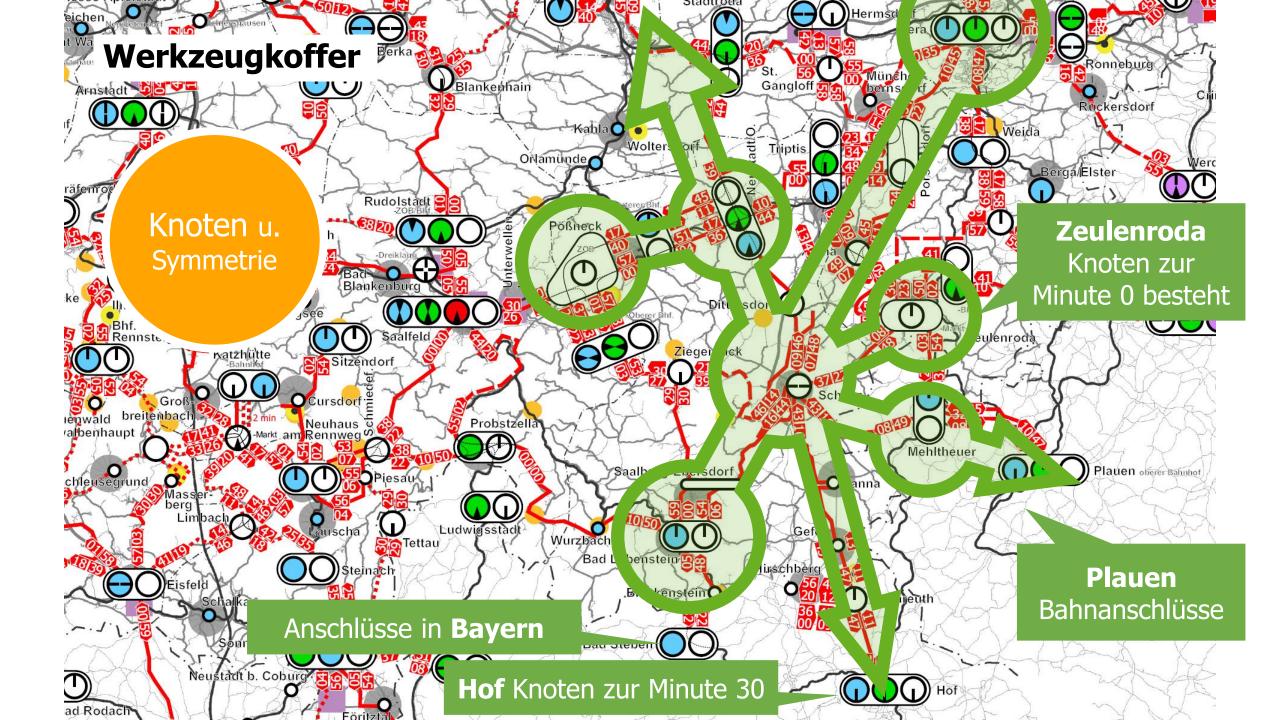




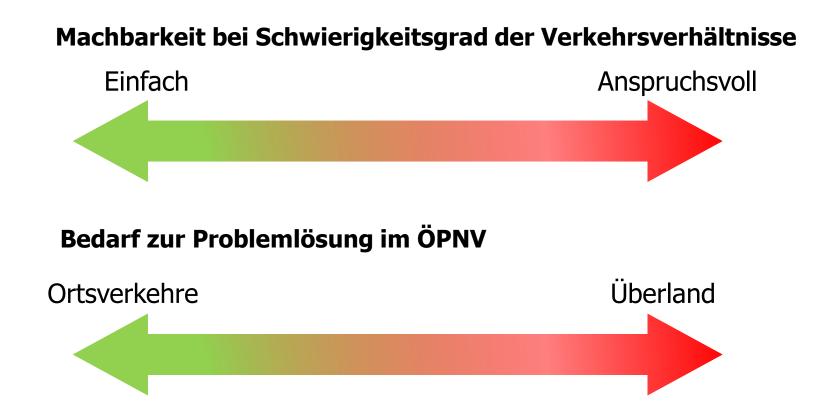



Deutschlandtakt

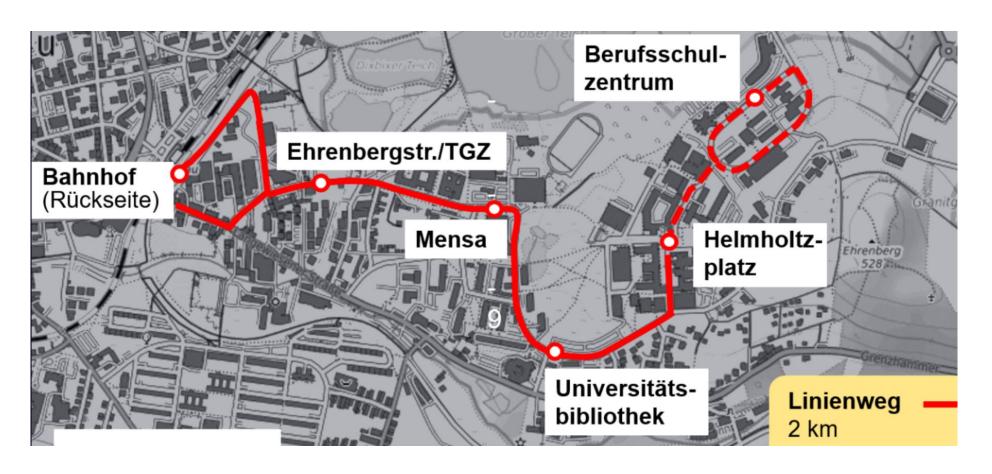

Berücksichtigt
3. Entwurf
und Vorplanungen
des Freistaates
Thüringen



Warum?

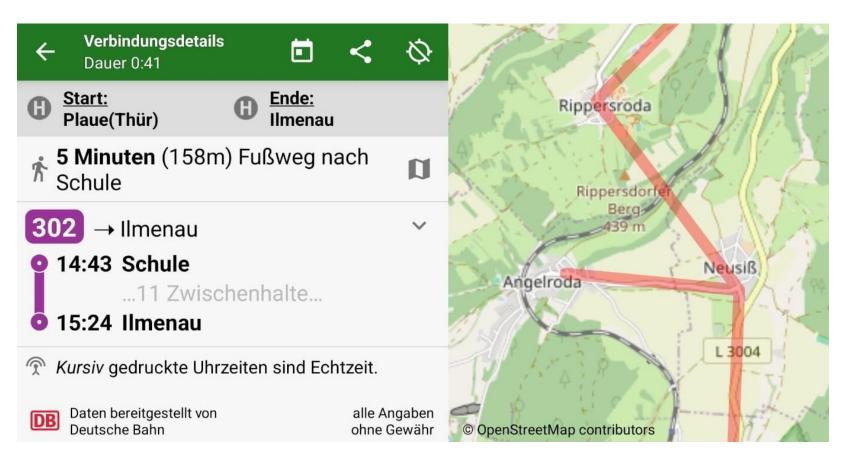

Bedienungsebenen

Differenzierung nach Bedeutung


Skalierbarkeit

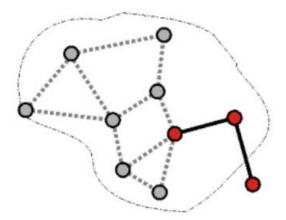
Einsatz automatisierter (fahrerloser) Fahrzeuge im ÖPNV

Stadtbuslinien mit geringer Nachfrage aber wichtiger Verkehrsaufgabe

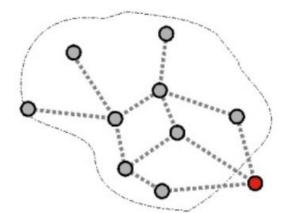


Ortsbuslinien mit geringer Nachfrage und engen Straßen

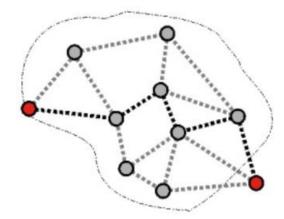
Beispiel aus dem Projekt autoNV_OPR Ortsbus Wusterhausen Erschließung von Wohngebieten Anbindung von Discountern und Bahnhof

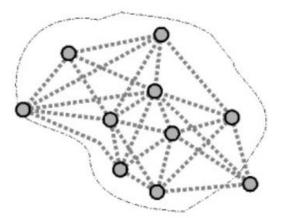


Zubringer zum Regionalbus oder Bahnverkehr zur Vermeidung von Umwegen



On demand (früher Rufbus oder Anruf-Sammel-Taxi)


Richtungsbandbetrieb mit Linienaufweitung


Richtungsbandbetrieb mit Sektorbedienung (nur Zu- oder Anbringer)

Richtungsbandbetrieb mit Korridorbedienung

Rufbus im Flächenbetrieb

Quelle: Handbuch Alternative Bedienung VBB

Empfehlung

Nutzen Sie die Forschungsprojekte, wie CAMIL und P:Mover

2 Entwickeln Sie das Hauptnetz des ÖPNV – die Schlagadern

Nutzen Sie mit und ohne Fahrer den ÖPNV als Integrator für die Mobilität der Zukunft

Innovative Betriebskonzepte für automatisierten ÖPNV auf der Straße

Abschlussveranstaltung im Projekt P:Mover Ilmenau, 27.11.2024, Tim Alscher

Agenda

- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

Agenda

- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

What Can We Do for You?

01100100 01100001 01110100

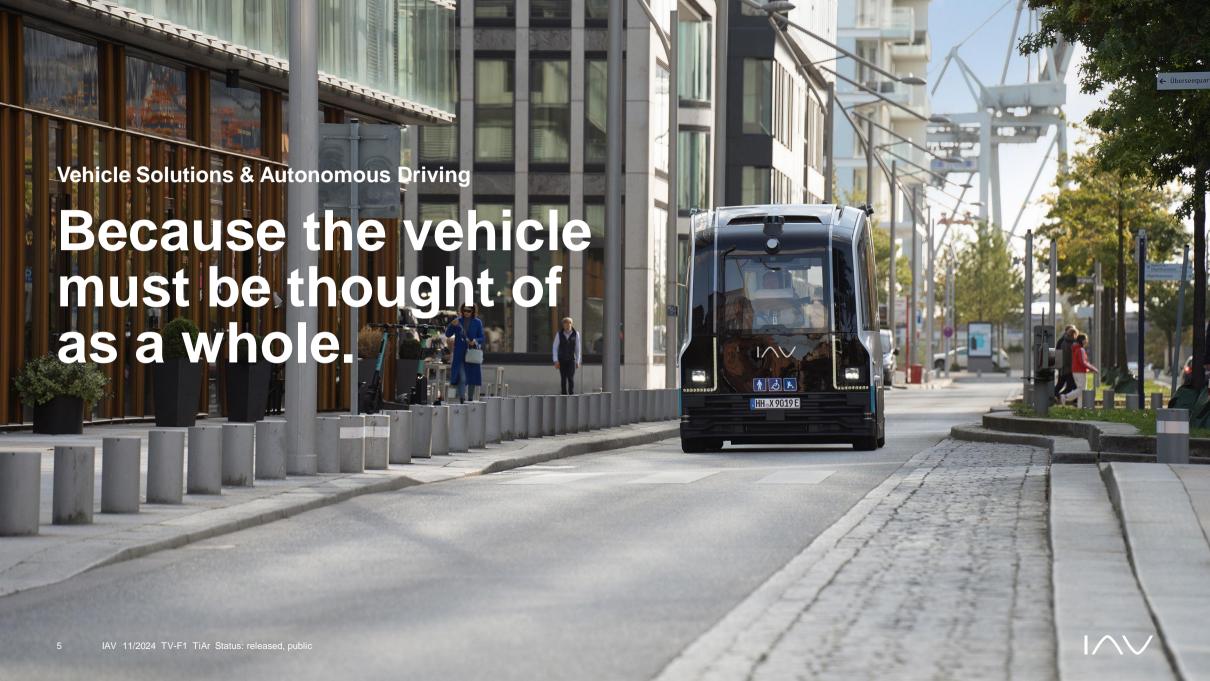
& Connectivity

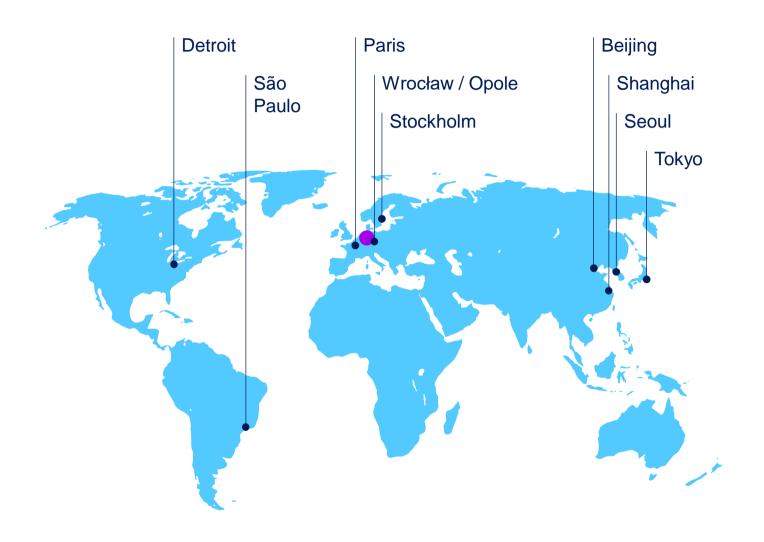
Because connected mobility knows no boundaries.

Vehicle Solutions & Autonomous Driving

Because the vehicle must be thought of as a whole.

Future Powertrain


Because the powertrain of the future has more than one solution in store.


Solutions & Products

Because innovative solutions are in our blood – even beyond mobility.

At Home Around the World

IAV in Germany

Berlin

Chemnitz/Stollberg

Gifhorn

Dresden

Friedrichshafen

Heimsheim

Ingolstadt

Kassel

Ludwigsburg

Munich

Neckarsulm

Nuremberg

Rostock

Sindelfingen

Weissach

Agenda

- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

Our Motivation

Common Aim

Attractive services in public transport:

- Fast & Flexible
- Autonomous & Secure

Public transport today

- Fixed route network
- Mostly conventional power units
- Driving personnel in each vehicle

Societal challenges

- Climate crisis
- Great volume of individual traffic, rural areas are being left-behind
- Poor market penetration by alternative solutions

It's time to set the track for automated public transport.

Reduction

- Of individual traffic
- Of complexity for today's bus drivers/passengers

Attractiveness

- through added valuewhen it comes to safety& comfort for the driver
- through on-demand services

Automation

- In defined deployment areas
- With the aid of latest mobile communication standard

Profitability

- Due to flexible steering concepts
- Due to selectable driving concepts contingent upon the deployment of the vehicle

Acceptance

- By staff
- By passengers

Means to strengthen Public Transport in Rural Areas (I)

Expectations of an attractive public transport system^[1] – users perspective:

- Narrow distances between stops
- Short frequencies and/or service on demand
- Short journey time
- Low prices
- Connection to urban networks and inter urban rail services

[1] Source: Gipp, C.; Brenck, A. und Schiffhorst, G. (2020): Zukunftsfähige öffentliche Mobilität außerhalb von Ballungsräumen. Berlin, München: IGES Institut GmbH im Auftrag des ADAC e.V. Verfügbar unter: https://assets.adac.de/image/upload/v1581494746/ADAC-eV/KOR/Text/PDF/zukunftsfaehige-oeffentlichemobilitaet-ausserhalb-von-ballungsraeumen_ADAC_Studie_kkr955.pdf(abgerufen: 01.03.2023).

Means to strengthen Public Transport in Rural Areas (II)

Expectations of an attractive public transport system – operators perspective:

- Connected, driverless Fleet
- Flexible Operating Modes
- Economical TCO
 - Vehicle costs
 - Control Room License
 - Maintenance
- new business models
 - On-Demand service
 - Logistic applications during night shift

Agenda

- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

Automated Driving

Legal Regulation in Germany

§1 StVG in connection with its executive order AFGBV

Boundaries by Operational Design Domain

- Characteristic of road pathway, such as track width, curve ratings, number of lanes, allowed maximum speed, etc.
- Infrastructure layout: traffic lights, cross walks, bar gates, etc.

Required Infrastructure

- Up-to-date HD-map
- Network to traffic lights, control room, etc.

Functionality

FLASH "Fahrerloses automatisiertes Shuttle" in Northern Saxony

Nordsachsen Mobil GmbH

Geschäftssitz: E-Mail:

Dresdener Straße 54 info@nordsachsen-mobil.de 04758 Oschatz Internet:

Tel.: 0 34 35 / 90 60 0 www.nordsachsen-mobil.de

216

FLASH Rackwitz, Bahnhof - Schladitzer Bucht - Biedermeierstrand - Rackwitz, Bahnhof

gültig ab 18.05.23 (ohne Gewähr)

Verkehrstage			Monta	g - Freita	g (außer l	Feiertag,	24.12. u. :	31.12.)					Samsta	g (auch 2	4.12. u. 3	1.12.), So	nn- und F	eiertag		
Fahrtnummer	1	3	7	11	15	21	23	27	31	35	701	703	707	711	715	721	723	727	731	735
Verkehrshinweise	⊕ ७≊	@ ©	@ ©	@ ©	@ ©	8														
S2 von Delitzsch	8:01	10:01	11:01	12:01	13:01	14:01	15:01	16:01	17:01	18:01	9:01	10:01	11:01	12:01	13:01	14:01	15:01	16:01	17:01	18:01
S2 von Leipzig	7:58	9:58	10:58	11:58	12:58	13:58	14:58	15:58	16:58	17:58	8:58	9:58	10:58	11:58	12:58	13:58	14:58	15:58	16:58	17:58
Rackwitz, Bahnhof ab	8:07	10:07	11:07	12:07	13:07	14:07	15:07	16:07	17:07	18:07	9:07	10:07	11:07	12:07	13:07	14:07	15:07	16:07	17:07	18:07
Rackwitz, Leipziger Str./Hauptstr.	8:10	10:10	11:10	12:10	13:10	14:10	15:10	16:10	17:10	18:10	9:10	10:10	11:10	12:10	13:10	14:10	15:10	16:10	17:10	18:10
Neuschladitz	8:13	10:13	11:13	12:13	13:13	14:13	15:13	16:13	17:13	18:13	9:13	10:13	11:13	12:13	13:13	14:13	15:13	16:13	17:13	18:13
Rackwitz, Schladitzer Bucht	8:20	10:20	11:20	12:20	13:20	14:20	15:20	16:20	17:20	18:20	9:20	10:20	11:20	12:20	13:20	14:20	15:20	16:20	17:20	18:20
Hayna, Biedermeierstrand an	8:28	10:28	11:28	12:28	13:28	14:28	15:28	16:28	17:28	18:28	9:28	10:28	11:28	12:28	13:28	14:28	15:28	16:28	17:28	18:28
Hayna, Biedermeierstrand ab	8:35	10:35	11:35	12:35	13:35	14:35	15:35	16:35	17:35	18:35	9:35	10:35	11:35	12:35	13:35	14:35	15:35	16:35	17:35	18:35
Neuschladitz	8:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	9:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45
Rackwitz, Leipziger Str./Hauptstr.	8:49	10:49	11:49	12:49	13:49	14:49	15:49	16:49	17:49	18:49	9:49	10:49	11:49	12:49	13:49	14:49	15:49	16:49	17:49	18:49
Rackwitz, Bahnhofan	8:52	10:52	11:52	12:52	13:52	14:52	15:52	16:52	17:52	18:52	9:52	10:52	11:52	12:52	13:52	14:52	15:52	16:52	17:52	18:52
S2 nach Leipzig	9:01	11:01	12:01	13:01	14:01	15:01	16:01	17:01	18:01	19:01	10:01	11:01	12:01	13:01	14:01	15:01	16:01	17:01	18:01	19:01
S2 nach Delitzsch	8:59	10:59	11:59	12:59	13:59	14:59	15:59	16:59	17:59	18:59	9:59	10:59	11:59	12:59	13:59	14:59	15:59	16:59	17:59	18:59
	, i											, i		, i						

Hayna Biedermei

③ ⑤: verkehrt nur donnerstags und freitags

: Flashbus als Rufbus, Anmeldung für einen konventionell antriebenen Bus bis 1 Std. vor Abfahrt und für den automatisch fahrenden Bus bis 24 h vor der Abfahrt erforderlich. Anmeldezeiten: Montag bis Freitag 5 - 22 Uhr, Samstag/Sonntag/Feiertag 8 - 22 Uhr unter Tell-Nr. 0342-1774 6 620

Anmerkungen

FLASH ... fahrerloses automatisiertes Shuttle. Auf dieser Linie werden hochautomatisierte Fahrzeuge eingesetzt.

www.mdv.de · MDV-Infotelefon: 0341 91 35 35 91

Im MDV gilt Ihr Verbundticket für 🛭 🐼 🚾 🥶

Source: Mitteldeutscher Verkehrsverbund (MDV)

Agenda

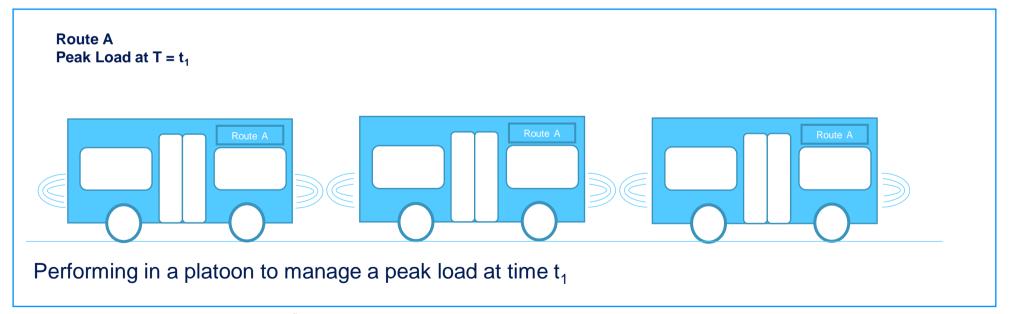
- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

Aspects of Autonomous Transport

Control Room

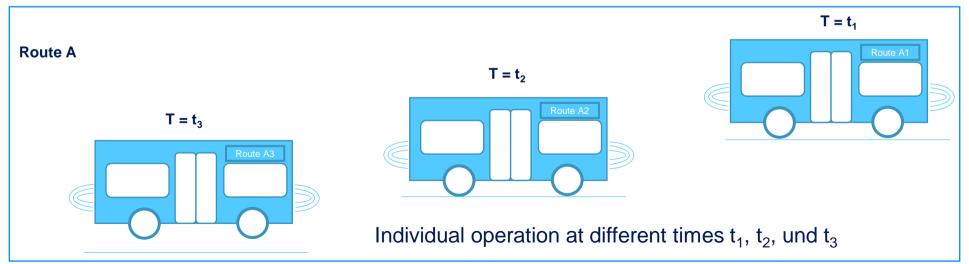
- Supervision
- Scheduling

Driverless operation


- 24/7 service possible without sticking to worktime regulations
- On Demand service (stopping and resuming almost everywhere)

Limitations

- Charging and Cleaning
- Maintenance


Time	Load Indication	Operational Strategy
Morning	Peak load due to shift working and pupil transport	 Unification of single vehicles (Platoon) to perform peak load → keeping to scheduled services On-Demand restricted

Source: Tim Alscher "Betriebsstrategien für automatisierte ÖPV-Angebote im ländlichen Raum", erschienen in Internationales Verkehrswesen, Heft 3, September 2023, 75. Jahrgang

Time	Load Indication	Operational Strategy
Morning	 Peak load due to shift working and pupil transport 	 Unification of single vehicles to perform peak load → keeping to scheduled services On-Demand restricted
Daytime	 Medium load: different requests regarding time and destination 	 Each vehicle on individual on-demand service (many small vehicles performing individually)

Source: Tim Alscher "Betriebsstrategien für automatisierte ÖPV-Angebote im ländlichen Raum", erschienen in Internationales Verkehrswesen, Heft 3, September 2023, 75. Jahrgang

Time	Load Indication	Operational Strategy
Morning	 Peak load due to shift working and pupil transport 	 Unification of single vehicles to perform peak load → keeping to scheduled services On-Demand restricted
Daytime	 Medium load: different requests regarding time and destination 	 Each vehicle on individual on-demand service (many small vehicles performing individually)
Afternoon/ Evening hours	High load depending on end of school and change of working shifts	Platooning of vehicles where necessaryOn-Demand available

Time	Load Indication	Operational Strategy
Morning	 Peak load due to shift working and pupil transport 	 Unification of single vehicles to perform peak load → keeping to scheduled services On-Demand restricted
Daytime	 Medium load: Different requests regarding time and destination 	 Each vehicle on individual on-demand service (many small vehicles performing individually)
Afternoon/ Evening hours	 High load depending on end of school and change of working shifts 	Platooning of vehicles where necessaryOn-Demand available
Night	Weak load	 Each vehicle on individual on-demand service Preferred time for charging, cleaning, maintenance

Preview

Unser Weg in die Zukunft des ÖV

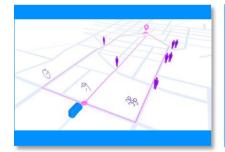
Systems of Systems Office

- Projektmanagement
- Prozessmanagement
- Architektur
- Einsatz
- Integration
- Freigabemanagement

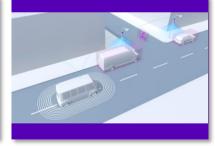
Level-4 Shuttle

- Basisfahrzeug
- HMI
- Energiemanagement
- AD Stack
-

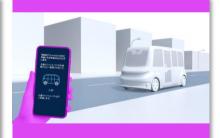
Infrastruktur

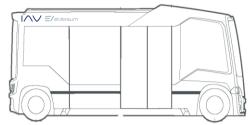

- RSU; LSA
- Laden
- Bushaltestellen
- Cloud-Lösungen
- Konnektivität
- · ...

Kontrollzentrum

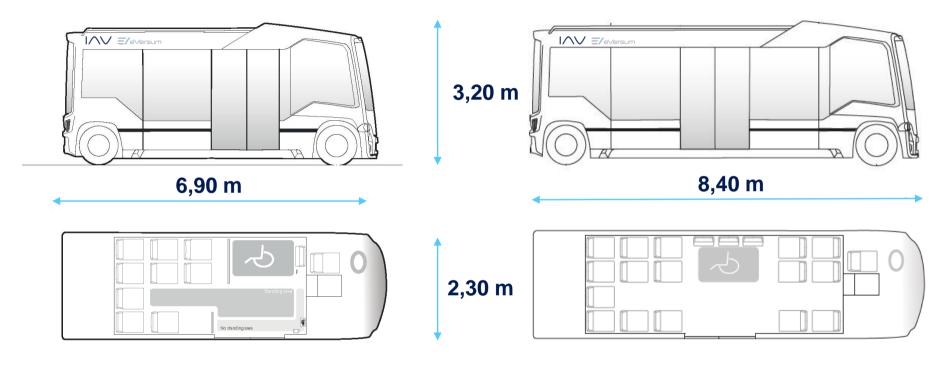

- Technische Aufsicht
- Dispositions-Leitstelle
- Lademanagement
- Koordinierung von Service und Wartung
- •

Kundenlösungen


- Mobilitätsapp
- Buchungen
- Pooling
- TaaS / MaaS
-



Fahrzeugspezifikationen



Barrierefreiheit	Komplett niederflurig begehbar
Antriebskonzept	Mehrere batterieelektrische Optionen mit Schnellladung & einer Reichweite von bis zu 250 km
Fahrzeugklasse	UN-ECE M3
Geschwindigkeit	60 km/h (hochautomatisiert)
Fahrumgebung	Städtische und ländliche Straßen
Verordnungen	Zugelassen nach ECE R-107
Autonomes Fahren	Level 4 (mit technischer Aufsicht)
Sensortechnik	Laserscanner, Radar, Kamera
Integration	Vollständige Anbindung an bestehende ÖV-Strukturen

L4-Shuttle: Konfigurationen

Bis zu 11 Sitzplätze und weitere Stehplätze Bis zu 20 Sitzplätze und weitere Stehplätze

Agenda

- 1. Vorstellung IAV
- 2. Es ist Zeit, die Weichen zu stellen! Problemstellung
- 3. Perspektiven des Automatisierten Fahrens
- 4. Innovative Betriebskonzepte
- 5. Offene Forschungsfragen

Open Questions

When will a real driverless operation be possible?

- 1. How much is it to implement driverless vehicles in Germany?
- a) Costs of automated vehicles?
- b) Costs and occupancy of control rooms?
- 2. What is the optimized vehicle size (capacity) for driverless operation?

Kontakt

Tim Alscher

IAV GmbH

Kauffahrtei 25, 09120 Chemnitz (GERMANY)

Phone +49 162 2344-302

tim.alscher@iav.de

www.iav.com

5G-Mobilfunk aus strahlenschutztechnischer Sicht

Christian Bornkessel

Technische Universität Ilmenau / Thüringer Innovationszentrum Mobilität
FG Hochfrequenz- und Mikrowellentechnik
christian.bornkessel@tu-Ilmenau.de

Deutsche Strahlenschutzkommission (SSK)

- Unabhängiges Beratungsgremium des Bundesumweltministeriums (BMUV)
- Schutz vor Gefahren ionisierender und nichtionisierender Strahlen
- Eigener Ausschuss für nichtionisierende Strahlen (A6)
- Besetzt mit Experten aus Technik, Biologie, Medizin, Epidemiologie

Mitglieder der SSK mit Bundesumweltministerin 2014, Quelle SSK

Deutsche Strahlenschutzkommission (SSK)

- Unabhängiges Beratungsgremium des Bundesumweltministeriums (BMUV)
- Schutz vor Gefahren ionisierender und nichtionisierender Strahlen
- Eigener Ausschuss für nichtionisierende Strahlen (A6)
- Besetzt mit Experten aus Technik, Biologie, Medizin, Epidemiologie
- Stellungnahme zu 5G-Mobilfunk im FR1 (bis ca. 7 GHz)

Strahlenschutzkommission

Geschäftsstelle der Strahlenschutzkommission Postfach 12 06 29 D-53048 Bonn

p://www.ssk.de

Elektromagnetische Felder des Mobilfunks im Zuge des aktuellen 5G-Netzausbaus

Technische Aspekte und biologische Wirkungen im unteren Frequenzbereich (FR1, bis ca. 7 GHz)

Stellungnahme der Strahlenschutzkommission

Verabschiedet in der 317. Sitzung der Strahlenschutzkommission am 09./10. Dezember 2021

Müssen wir uns überhaupt um den Strahlenschutz bei 5G kümmern?

- Ja, aus Gründen der Risikokommunikation
- Ja, da es einige immissionsrelevante technische Neuerungen bei 5G im Vergleich zu den Vorgängertechnologien gibt
- Ja, da es noch offene Fragen zu biologischen Wirkungen von Mobilfunkstrahlung gibt

Gliederung

- Ja, aus Gründen der Risikokommunikation
- Ja, da es einige immissionsrelevante technische Neuerungen bei 5G im Vergleich zu den Vorgängertechnologien gibt
- Ja, da es noch offene Fragen zu biologischen Wirkungen von Mobilfunkstrahlung gibt

Risikokommunikation

5G-Sicht von mobilfunkkritischen Kreisen

Quelle: FRANCE 24

Risikokommunikation

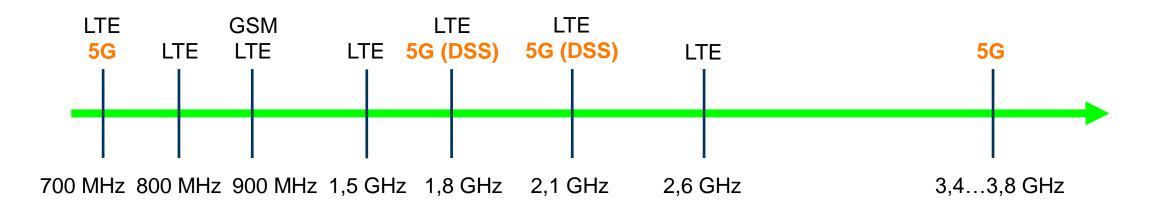
Immissionsmessungen als vertrauensbildende Maßnahme

- Immissionsmessungen durch eine unabhängige Instanz genießen höheres Vertrauen als Berechnungen der Mobilfunknetzbetreiber
- Hohe Anforderungen an fachlich korrekte Messungen → reproduzierbare Messverfahren!

Gliederung

- Risikokommunikation
- 5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien
- Grenzwerte und aktueller Stand der biologischen Forschung

5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien Immissionsrelevante Parameter


- Für die Größe und Verteilung der Immission (Feldstärke vor Ort) sind anlagenseitig die Sendeleistung und die Art der Sendeantenne maßgeblich
- Für die Grenzwertausschöpfung ist auch die Frequenz maßgeblich

- Sendeleistung: spektrale Sendeleistung (Watt/Hz) vergleichbar zu UMTS und LTE; Kanalsendeleistung in gleicher Größenordnung wie bei GSM, UMTS und LTE (Skalierung entsprechend Kanalbandbreite)
- Sendeantenne und Frequenz → nächste Folien

5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien Frequenzen der Mobilfunkdienste in Deutschland (November 2024)

Die derzeit für 5G eingesetzten Frequenzen sind nicht neu:

- 700 MHz: bisher analoges und digitales Fernsehen
- 1,8 GHz: GSM (E-Bänder)
- 2,1 GHz: UMTS
- 3,4...3,8 GHz: WiMAX

5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien Antennenart

Die Art der Antenne ist abhängig vom Stationstyp!

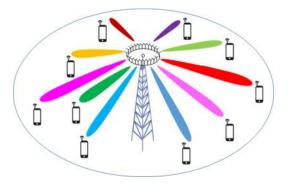
Kleinzelle indoor (Pikozelle)
Einige 10 m Abdeckung
Rundstrahlend oder gerichtet
Antennendiagramm statisch

Kleinzelle outdoor (Mikrozelle)
Bis einige 100 m Abdeckung
Rundstrahlend oder gerichtet
Antennendiagramm statisch

Makrozelle
Bis einige km Abdeckung
Primär gerichtet
Diagramm statisch oder dynamisch

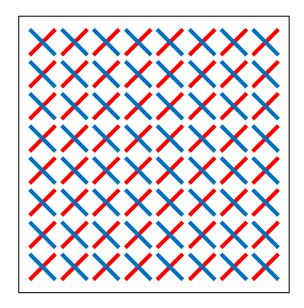
5G: Gemeinsamkeiten und Unterschiede

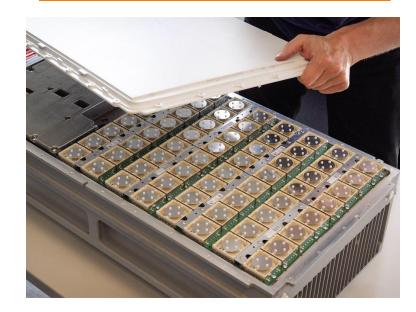
Antennenart: Strahlformung, Strahlschwenkung


- Bei Makrozellen im Frequenzbereich 3,4...3,8 GHz können strahlformende und strahlschwenkende Antennen eingesetzt werden (sog. Massive MIMO Antennen)
- Strahlbreite an typ. Aufenthaltsorten einige Meter
- Einzelne Strahlungsrichtungen (Beams) werden speziell auf den Nutzer (Mobilgerät) ausgerichtet und ggf. nachgeführt (dynamische Abstrahlung)
- Bei anderen Zelltypen oder anderen Frequenzen gibt es diese Möglichkeit nicht!

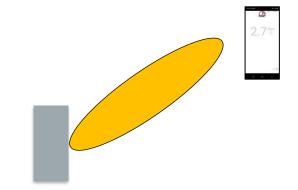
MIMO: Multiple Input Multiple Output

Dynamische Abstrahlung


Quelle: Khandaker, Wong


5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien Wie wird Strahlformung und Strahlschwenkung realisiert?

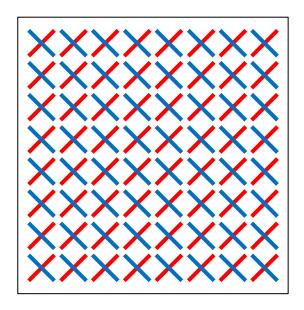
Array mit 8x8x2 Einzelelementen


Speisung mit unterschiedlicher Amplitude und Phase

Massive MIMO Antenne in Realität

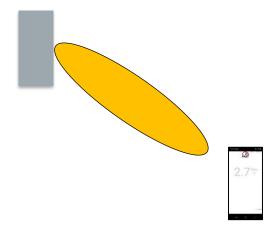
Quelle: Deutsche Telekom

Resultierendes Diagramm



5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien Wie wird Strahlformung und Strahlschwenkung realisiert?

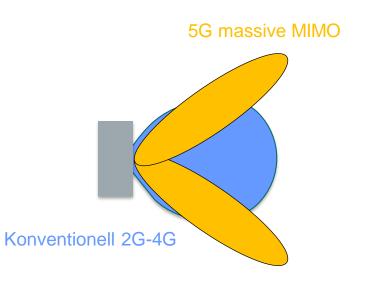
Array mit 8x8x2 Einzelelementen


Speisung mit unterschiedlicher Amplitude und Phase

Massive MIMO Antenne in Realität

Quelle: Deutsche Telekom

Resultierendes Diagramm



5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien

Auswirkungen auf die Immission

- Strahlformung bei Massive MIMO Antennen: Antennengewinn
 5...7 dB (Faktor 3...5) größer als bei herkömmlichen Antennen
- Zusammen mit der größeren Sendeleistung ist in Hauptstrahlrichtung die Strahlungsleistung höher (typ. bis 10 dB)
- In nicht durch den Strahl erreichten Bereichen ist Immission kleiner als bei GSM, UMTS und LTE!
- Bei "Tausch" von UMTS auf 5G mit Antennen ohne Strahlformung/-schwenkung: Immissionssituation ändert sich nicht!
- Messtechnische Begleitung des 5G-Auf- und Ausbaus nötig
- 5G Massive MIMO erfordert neue Messverfahren

Gliederung

- Risikokommunikation
- 5G: Gemeinsamkeiten und Unterschiede zu Vorgängertechnologien
- Grenzwerte und aktueller Stand der biologischen Forschung

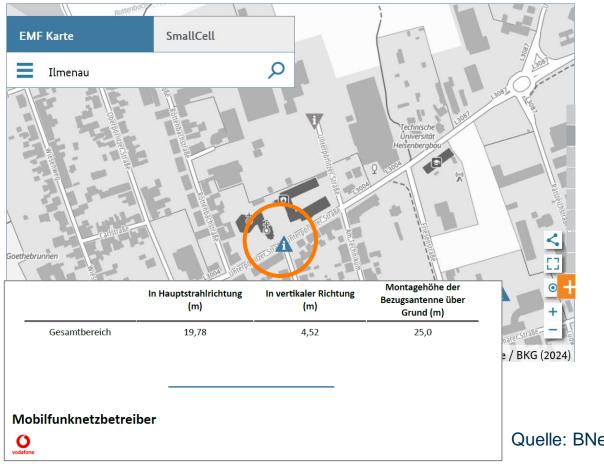
Grenzwerte und aktueller Stand der biologischen Forschung Grenzwertphilosophie

Nachgewiesener biologischer Effekt Ermittlung der Wirkschwelle Ermittlung der benötigten Feldintensität Basisgrenzwert (Sicherheitsfaktor) Referenzwert SAR: Spezifische Absorptionsrate S_{ab}: absorbierte Leistungsdichte

1° C

SAR: 4 W/kg (ab 6 GHz S_{ab})

0,08 W/kg Ganzkörper, 2...4 W/kg Teilkörper

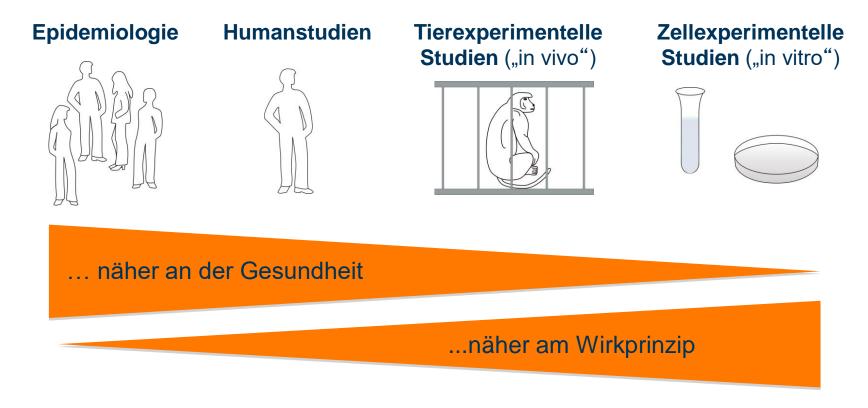

ab 10 MHz: 28...61 V/m (26. BlmSchV)

Grenzwerte und aktueller Stand der biologischen Forschung

Umsetzung in Deutschland: Standortverfahren

- Für den Gesamtstandort wird ein Sicherheitsabstand berechnet, außerhalb dessen die Grenzwerte eingehalten werden
- **Basis: maximale Anlagenauslastung**
- Standort wird genehmigt, wenn Allgemeinbevölkerung keinen Zutritt zu Bereichen innerhalb des Sicherheitsabstandes hat

Quelle: BNetzA


Grenzwerte und aktueller Stand der biologischen Forschung SSK-Empfehlung zu 5G

Etablierte Wirkung	Wärmewirkung
Hypothetische Wirkungen	Zelle: - Oxidativer Stress/ROS - DNA-Schäden
	Organ (hier: Gehirn): - Blood Brain Barrier - Melatonin - Hirntumoren - Kognition und Gedächtnis - Neurodegenerative Erkrankungen (Alzheimer-Demenz, Amyotrophe Lateralsklerose)
	Organ (hier: Testes): - Spermienqualität
	Organismus: - EEG (Schlafstörungen) - ADHS

Grenzwerte und aktueller Stand der biologischen Forschung Studienarten

Es kommt auf die Gesamtschau aller Ergebnisse an!

Grenzwerte und aktueller Stand der biologischen Forschung SSK-Empfehlung zu 5G

Endpunkte	Evidenzlinien / Bewertung			
	Epidemio- logie	Humanstudien	Tierexperimentelle Studien	Zellexperimentelle Studien
Krebs	0		+/0	+/0
Verhalten	0		+/0	
Kognitive Funktionen	+/0	+/0	+/0	
Zerebraler Blutfluss und Hirnstoffwechsel		0	-	
Schlaf-EEG – Spektralwerte		+		
Schlaf-EEG – Makrostruktur		0		
Ruhe-EEG im Wachzustand		+		
Ereigniskorrelierte und evozierte Potenziale		+/0	+/0	
Autonomes Nervensystem und kardiovaskuläres System	0	-	n.v.	
Neurodegenerative Erkrankungen	0		-	0
Symptome und Wohlbefinden	0	-		
Immunsystem und Hämatologie	0	0	n.v.	n.v.
Fertilität und Fortpflanzung	0	0	+/0	0
Embryonalentwicklung	0		0	n.v.
Andere Organsysteme	0	0	0	n.v.
Gentoxikologie	0	0	+/0	+/0
Oxidativer Stress		0	+	+
Mechanistische Untersuchungen			0	0

- Unzureichende Evidenz
- Evidenz für Abwesenheit eines Effektes
- n.v. Studien liegen nicht vor Studien können nicht durchgeführt werden

Quelle: SSK, EMF des Mobilfunks im Zuge des aktuellen 5G-Netzausbaus

Grenzwerte und aktueller Stand der biologischen Forschung Schlussfolgerungen aus SSK-Empfehlung

- Evidenz für alle evaluierten Gesundheitseffekte ist "abwesend" oder "unzureichend" oder liegt im Grenzbereich zwischen "unzureichend" und "begrenzter Evidenz"
 - → Gesundheitsrisiko für das Individuum ist klein, sofern es besteht
 - → Möglicher Zusammenhang kann niemals vollständig ausgeschlossen werden
- Für die beobachteten biologischen Effekte (Schlaf- und Wach-EEG, oxidativer Zellstress) ist nicht nachgewiesen, ob sie gesundheitlich relevant sind
- Infolge der verbreiteten Nutzung von Funktechnologien k\u00f6nnen auch potenziell kleine Risiken gesellschaftlich relevant sein
 - → Laufende, technologiebegleitende Evaluierung möglicher Gesundheitsrisiken
 - → Aufbau einer Datenbank mit belastbaren Daten zu den durch 5G erzeugten mittleren und maximalen Immissionen → Durchführung von Messungen

Zusammenfassung

- Strahlenschutztechnische Begleitung des 5G Auf- und Ausbaus ist nötig
 - aus Gründen der Risikokommunikation
 - wegen immissionsrelevanter Neuerungen 5G
 - wegen offener Fragen aus der Forschung
- Messungen sind wichtiger Bestandteil der strahlenschutztechnischen Begleitung
- Im Projekt P:Mover wurden neue
 Messverfahren entwickelt und zahlreiche
 Messungen der Momentan- und
 Maximalimmission durchgeführt

Quelle: ThIMo

Vielen Dank für Ihre Aufmerksamkeit!

>> Haben Sie Fragen oder Anmerkungen?
Bitte kontaktieren Sie mich:

christian.bornkessel@tu-ilmenau.de

Tel. +49-3677.69-1592

aufgrund eines Beschlusses des Deutschen Bundestages

Pionierregion: Mobilitätslösungen im suburbanen Raum vernetzen – P:Mover

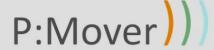
Projektvorstellung

Berk Altinel / Projektkoordinator / Stadtverwaltung Ilmenau Arne Martius / Öffentlichkeitsarbeit / Stadtverwaltung Ilmenau

5G-Innovationswettbewerb im Rahmen der 5x5G-Strategie (Bundesministerium für Digitales und Verkehr)

Förderschwerpunkt:

Vorbereitung und Umsetzung von Projekten für die Erprobung und Erforschung anwenderbasierter Lösungen unter realen Bedingungen u.a. in den Bereichen


- Energie
- Gesundheit
- Industrie 4.0
- Verkehr/Mobilität
- Landwirtschaft und
- Logistik

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

5G-Innovationswettbewerb im Rahmen der 5x5G-Strategie

3-stufiges Förderprogramm:

Stufe I - Die 5G-Forschungsregionen (2019 - Förderung von 6 Forschungseinrichtungen)

Stufe II - Der 5G-Innovationswettbewerb (2020-21 - Konzeptförderung für 67 Kommunen & Kreise)

Stufe III - Die 5G-Umsetzungsförderung (2021-24 - Konzeptumsetzung 50 Städte & Regionen)

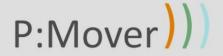
Laufzeit Umsetzungsförderung:

3 Jahre von 22.10.2021 bis 31.12.2024

Projektpartner:

Stadt Ilmenau (Koordination)

TU Ilmenau mit dem Thüringer Innovationszentrum Mobilität (kurz: ThIMo)


Funkwerk Systems GmbH

Ginger Lehmann+Partner GmbH

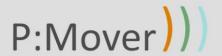
Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

P:Mover – Anwendungsdomänen

Wirtschaft:

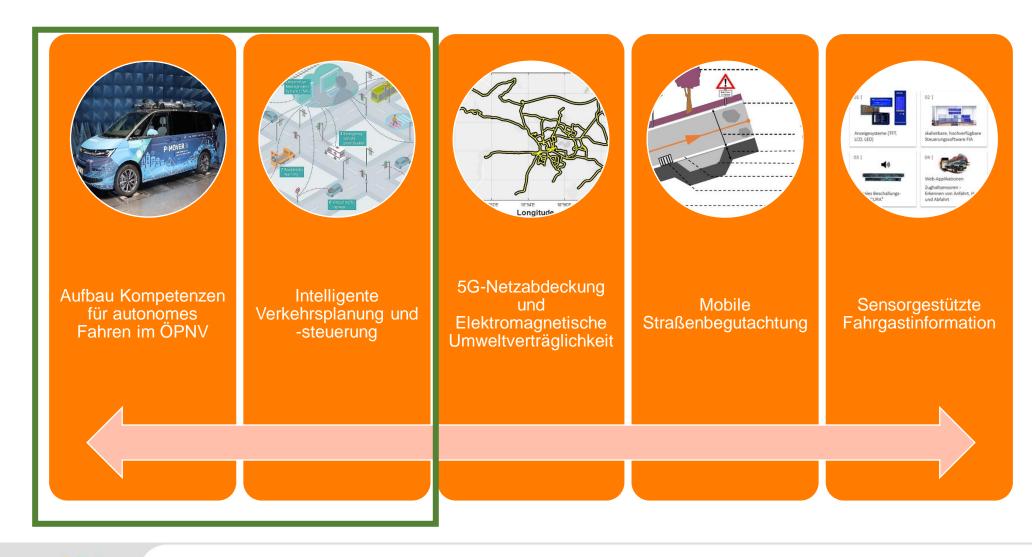
- Einarbeitung und Implementierung eines intelligenten Beförderungsangebots mit Fahrgastinformationen
- Effiziente und automatisierte Straßenzustandserfassung zur Verkehrsbegutachtung


Wissenschaft:

- Bewertung der 5G-Netzabdeckung in der Projektregion für Verkehrsanwendungen
- Begleitforschung zur **elektromagnetischen Umweltverträglichkeit** (EMVU)

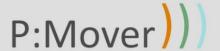
kommunale Aufgaben:

- Digitalisierung und Automatisierung der Aufgaben im Verkehrssektor
- Verkehrsplanung, –erfassung und –steuerung von hochautomatisierten Fahrzeugen



P:Mover – Projektschwerpunkte

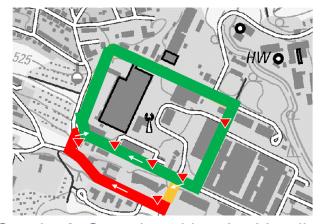
P:Mover – Aufbau Kompetenzen für automatisiertes Fahren


Ziel: Erprobung eines L4-fähigen Forschungsfahrzeug im öffentlichen Straßenverkehr

 Beschaffung des L4-fähigen Forschungsfahrzeug durch europaweites Ausschreibungsverfahren – Vergabe an die IAV GmbH

→ Marktsondierung, Lastenheft mit Bewertungsmatrix, Streckenauswahl etc.

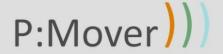
- Umbau eines Serienfahrzeuges für Fahrfunktionen nach Automatisierungsstufe 4 (SAE)
- Absprachen zum Sensorsetup und regelmäßige Treffen
- flexibles Sensorsetup mit Blick auf zukünftige Projekte mit anderen Einsatzszenarien
- Schulung von Sicherheitsfahrern
- Gutachten und Straßenzulassungsverfahren


P:Mover – Aufbau Kompetenzen für automatisiertes Fahren

Ziel: Erprobung eines L4-fähigen Forschungsfahrzeug im öffentlichen Straßenverkehr

Zulassung des automatisiertes Fahrbetriebs auf zwei Verkehrsrouten im Stadtgebiet Ilmenau

Strecke 1: Bahnhof Ilmenau - TU Campus - Berufsschule



Strecke 2: Gewerbegebiet "Am Vogelherd"

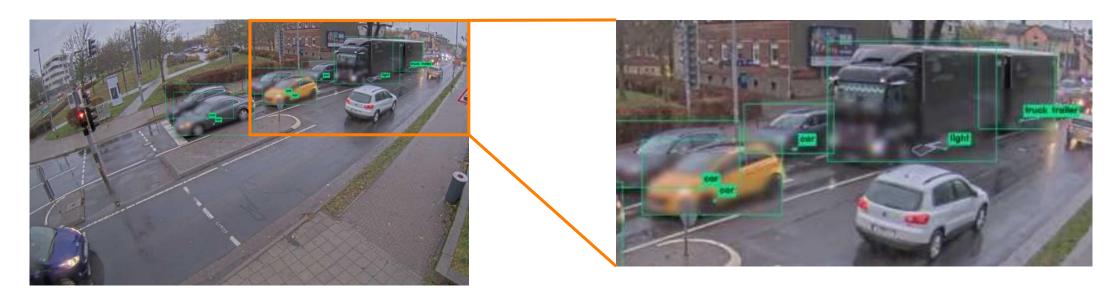
- simuliertes Anfahren der Haltestellen → um die ÖPNV Charakteristik zu erproben (keine Personenbeförderung)
- Sensoren (Kameras und "Road Side Units") eingesetzt auf der Strecke 1
- → Verknüpfung von Forschungsfahrzeug und Ampelkreuzungen

Strecke 1: 2,9 km → 8 Haltestellen Strecke 2: 2,2 km → 3 Haltestellen

P:Mover – Intelligente Verkehrsplanung und -steuerung

Ziel: Einsatz von Sensoren zu Steuerung des Verkehrsflusses an Knotenpunkten im Stadtgebiet Ilmenau

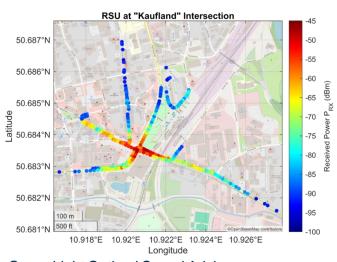
- V2X-Funkmodule (RSU) und Kameras an zwei Kreuzungen
- Insgesamt fünf Kameras und eine RSU pro Kreuzung
- Datenschutzkonforme Klassifizierung von Verkehrsteilnehmern mit einem System von Yunex Traffic GmbH

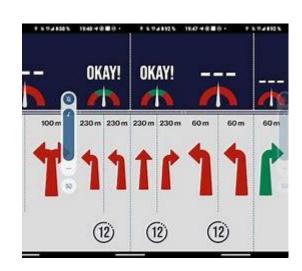


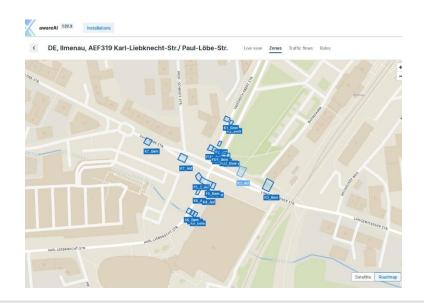
P:Mover – Intelligente Verkehrsplanung und -steuerung

Kamera-basierte Verkehrsflussoptimierungssystem

- Detektion und Klassifizierung von Verkehrsteilnehmern, Objekttrajektorien und Bewegungsmustern
- Dynamische Adaption der LSA Steuerung z.B. längere Grünphase für ÖPNV (Priorisierung ÖPNV oder Rettungsfahrzeuge)


P:Mover – Intelligente Verkehrsplanung und -steuerung


"Road Side Units"

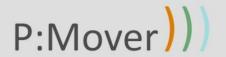

- Übermittlung von Verkehrsinformationen durch V2X Kommunikation (C-V2X und ITS-G5)
- Effizienter Fahrverhalten durch Übertragung von LSA-Signalzeiten (GLOSA) →Signal2X App von Yunex Traffic GmbH

© M. Hein, ThIMo

Breitbandige Systemanbindung mittels 5G an einen Cloud-Server

GLOSA: Green Light Optimal Speed Advisory

1. Analyse und Strategieentwicklung


- Koordination der Öffentlichkeitsarbeit
- Aufbau einer Webpräsenz unter www.ilmenau.de/pmover
- Begleitung des Prozesses zur Findung des Fahrzeugdesigns
- Medieninformationen und Verknüpfung von P:Mover mit anderen Themen wie Mobilität oder Demografie

Zielstellung: Image von P:Mover als Instrument zur Verbesserung der Lebensqualität im

ländlichen Raum

2. Kommunikation

- Beiträge im Amtsblatt der Stadt Ilmenau und veröffentlichte Medieninformationen in Regionalzeitungen
- Nutzung der sozialen Netzwerke der Stadt Ilmenau, um das Projekt im Gespräch zu halten
- einfaches Erklärvideo zum Einstieg mit Interviews aller Beteiligten
- regelmäßige Aktualisierung der Webseite
- Begleitung professioneller Dreharbeiten für einen Film der Projektfamilie des Thüringer Innovationszentrums Mobilität

Intelligente Verkehrslösungen werden im Ilmenauer Projekt P:Mover erforscht

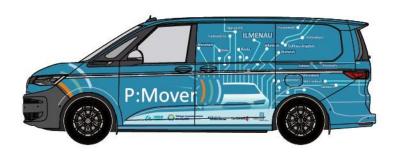
Wie kann der ländliche Raum besser mit der Stadt verknüpft werden? Diese Frage stellt sich in Ilmenau seit der Gebietsreform, bei der die Fläche der Kommune auf das Dreifache wuchs. Hinzu kommen eine anspruchsvolle Topografie und ausgeprägte Jahreszeiten durch die Lage im Thüringer Wald. Als moderne Stadt mit Sitz einer Technischen Universität und "smart city" Ambitionen wird Ilmenau somit zum idealen Reallabor: Im Projekt P:Mover forschen Unternehmer und Wissenschaftler gemeinsam an intelligenter Verkehrslösungen, die für den Strukturwandel des Öffentlichen Personennahverkehrs (ÖPNV) von überregionaler Bedeutung sind.

Automatisierte Fahrzeuge kombiniert mit der neuesten Mobilfunkgeneration

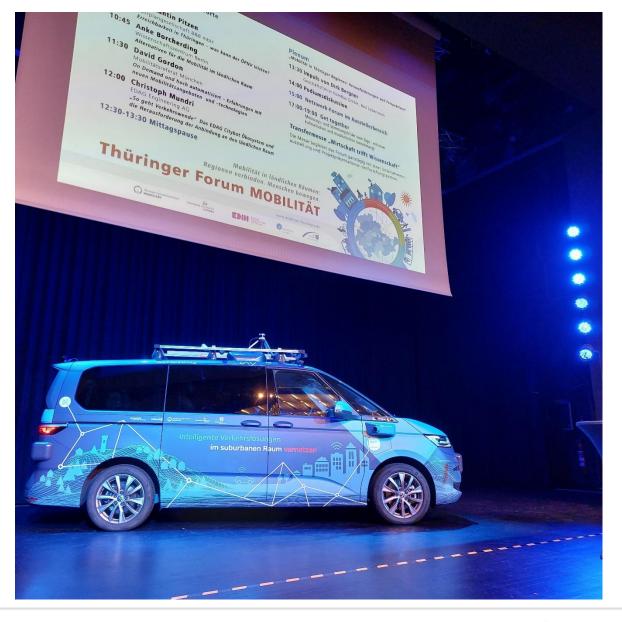
Ein hoher Automatisierungsgrad von Fahrzeugen kombiniert mit der neuesten Mobilfunkgeneration bietet Raum für Innovationen. Die leistungsfähige Echtzeit-Datenverbindung des 5G-Netzes ist nicht nur die Grundlage für einen perspektivisch autonomen Personennahverkehr. Sie eröffnet außerdem neue Möglichkeiten für Fahrgastinformationssysteme und kommunale Aufgaben wie die Straßenzustandsüberwachung. Im Projekt P:Mover werden die Herausforderungen der Zukunft bearbeitet.

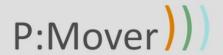
Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages


3. Präsentationen und Fahrzeugdesign

 Begleitung der Entstehung des Fahrzeugdesigns durch Wettbewerbsverfahren mit vier verschiedenen Entwürfen



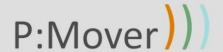


3. Präsentationen und Fahrzeugdesign

- Begleitung der Entstehung des Fahrzeugdesigns durch Wettbewerbsverfahren mit vier verschiedenen Entwürfen
- Präsentation von P:Mover durch das ThIMo beim Thüringer Forum Mobilität in Bad Blankenburg
- Vorbereitung der Präsentation des Fahrzeugs im Projekt P:Mover in der Öffentlichkeit
- Mitwirkung bei der Vorbereitung der Abschlussveranstaltung

- 4. Fahrzeugvorstellung und P:Mover-Flyer mit der ThIMo-Projektfamilie
- 14.November 2024: Vorstellung des Fahrzeugs vor lokalen und regionalen Medien (u.a. Erwähnung im Thüringen-Journal des MDR)
- Entstehung eines gemeinsamen Flyers, der neben P:Mover auch Einblick in die Projektfamilie des ThIMo gibt

Ziel: Mit verständlicher Sprache die Bürgerinnen und Bürger über die Anstrengungen auf dem Gebiet des automatisierten Fahrens zu informieren


Vielen Dank für Ihre Aufmerksamkeit

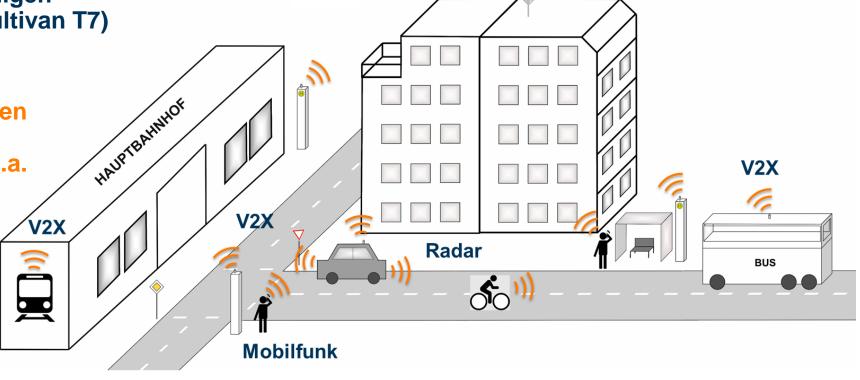
Stadtverwaltung Ilmenau
Berk Altinel
Arne Martius
p.mover@ilmenau.de
www.ilmenau.de/pmover

Wir stehen gerne zur Verfügung für weitere Fragen

Wissenschaftliche Domäne: Projektinhalte und Ergebnisse

Thüringer Innovationszentrum Mobilität, Technische Universität Ilmenau

Erschließung der Straße als 5G-Reallabor


Höhere Fahrautomatisierungsstufen und bessere Vernetzung

 Einsatz hochautomatisierter Fahrzeuge im ÖPNV

> Beschaffung eines L4-fähigen Fahrzeugs (Basis: VW Multivan T7) auf zwei ausgewählten städtischen Routen

• Erforderliche Funktechnologien aus verschiedenen Bereichen im Projektgebiet, u.a.

- 4G- und 5G-Mobilfunk
- V2X-Kommunikation
- Zusammenarbeit zwischen wissenschaftlicher und kommunaler Domäne

V2X: vehicle-to-everything

Mobilfunk

ThlMo – Forschungsoffensive Digitale Mobilität

Überblick der Beiträge in P:Mover

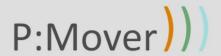
Automatisiertes Fahren

- Rechentechnik und Sensorkomponenten (u.a. Kamera, LIDAR, Radar) zur Umrüstung des Basisfahrzeugs
- Ausbildung von Sicherheitsfahrern
- HD-Karten für zwei städtische Routen
- Künftig: Aktualisierung bestehender und Implementierung weiterer Routen für automatisierten Fahrbetrieb

- Unterstützung beim Ausbau der Funkinfrastruktur
- Servertechnik f
 ür neue Datennetze

5G-Mobilfunk

- Bewertung der Funknetzabdeckung für Anwendungsfälle des automatisierten Fahrens
- Studien zur elektromagnetischen Umweltverträglichkeit

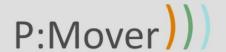


ThIMo: Thüringer Innovationszentrum Mobilität; LIDAR: light detection and ranging

Messtechnische Umsetzung

Netzabdeckung (passiv)

 Auswertung der Empfangsleistung von Signalisierungs- und Referenz-Signalen der Mobilfunk-Basisstationen (unabhängig vom Netzbetreiber) Rohde & Schwarz - Netzwerkscanner

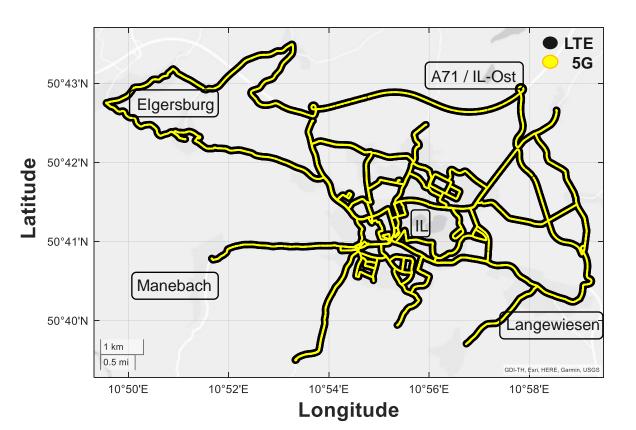

Netzwerkperformance (aktiv)

- Applikationsnahe Tests mit Endgerät (UE)
 QualiPoc Smartphone Samsung S22+
- Dienstgüte-Bewertung (QoS) anhand des provozierten Datenverkehrs (nach ITU-T G.1051)

ITU-T: International Telecommunication Union-Telecommunication Standardization Sector

QoS: Quality of Service; UE: user equipment

Antenne



Ergebnisse im Stadtgebiet Ilmenau und ländlichen Umland

Beispiel: LTE bzw. 5G Verfügbarkeit

Fläche: ca. 200 km²

suburban / ländlich **Geografische Prägung:**

Untersuchte Straßen: 120 km

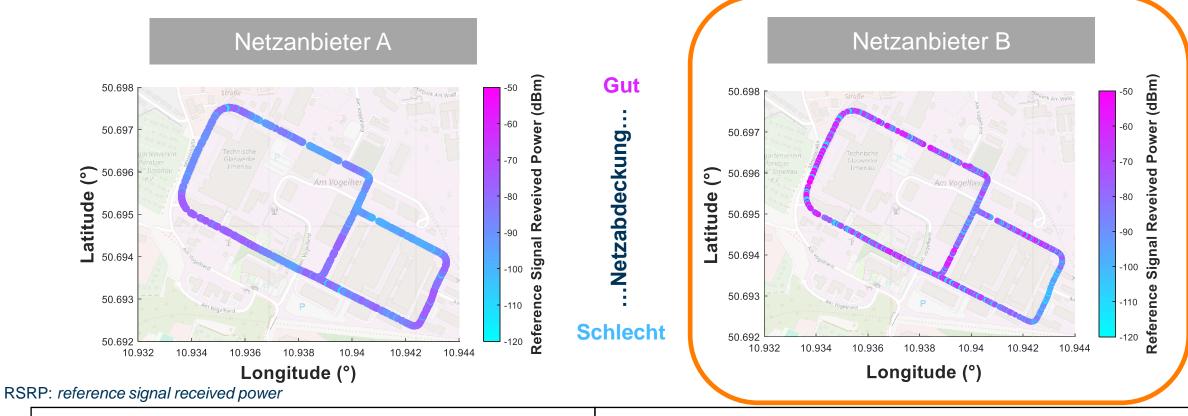
Mobilfunk-Versorgung: GSM, LTE, 5G

(je 3 Netzbetreiber)

Anzahl verfügbarer **Basisstationen:**

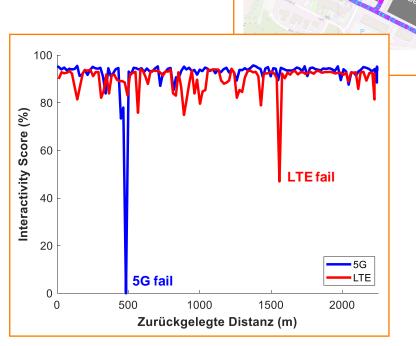
ca. 105

- → Durchgängige LTE + 5G Verfügbarkeit
- → Leistungsstarkes 5G massive MIMO nur an wenigen Standorten in der Stadt verfügbar
- → Wie gut ist die Verbindung bzw. wie leistungsstark ist die Netzanbindung?



5G-Versorgung je Netzanbieter "Am Vogelherd" (best serving cell)

- → Keine Netzunterbrechungen vorhanden
- → Leistungsfähigkeit variiert je Netzbetreiber
- → Analyse der Umsetzbarkeit von 5GAA Use Cases anhand definierter Kommunikationsprofile



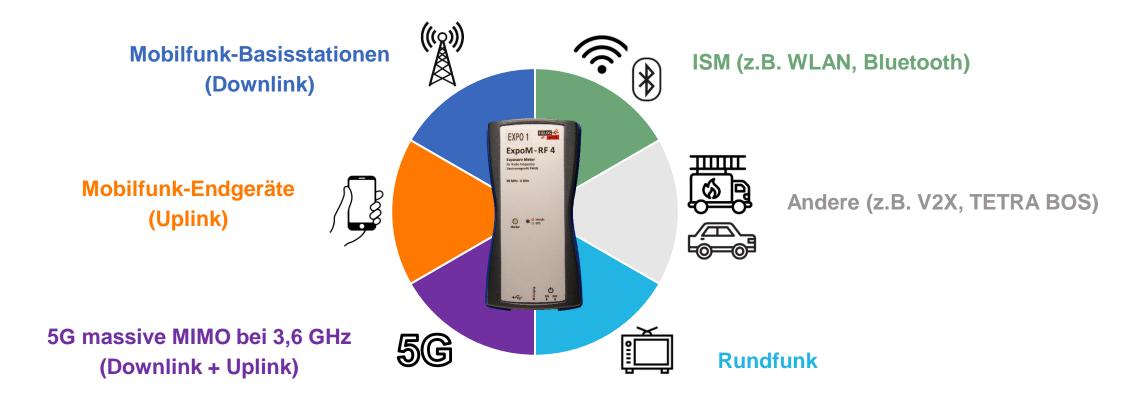
Netzwerkperformance "Am Vogelherd"

- Provozierter Datenverkehr / Kommunikationsprofil gemäß 3GPP ETSI TR 103 702: "HD Streaming / Video Chat HD"
 - → Video-Liveübertragung beim teleoperierten Fahren
- "Interactivity score" (Datenrate, Latenz und Zuverlässigkeit) bewertet Umsetzbarkeit von Anwendungsszenarien

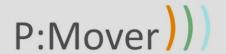
Schlussfolgerungen zur Netzabdeckung:

- ✓ Standard-konformes Messkonzept ermöglicht einen standortübergreifenden Vergleich der Netzwerkperformance
- ✓ L4-fähiges Fahrzeug ist mit derzeitiger Mobilfunkversorgung in ausgewählten ODD betriebsfähig (Forschungszulassung mit Sicherheitsfahrer)
- → ggf. Multi-Provider Lösungen erforderlich!

ODD: operational design domain



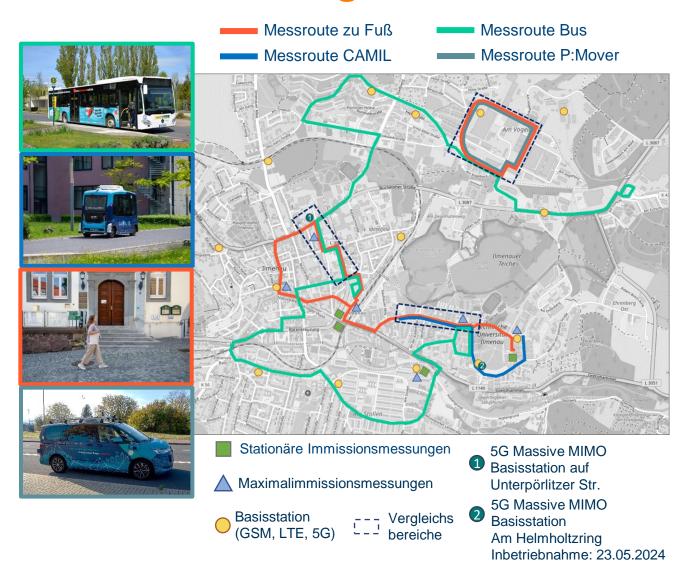
5G-Empfangsleistung

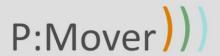


5G fail

Ermittlung der hochfrequenten Immission für den Strahlenschutz

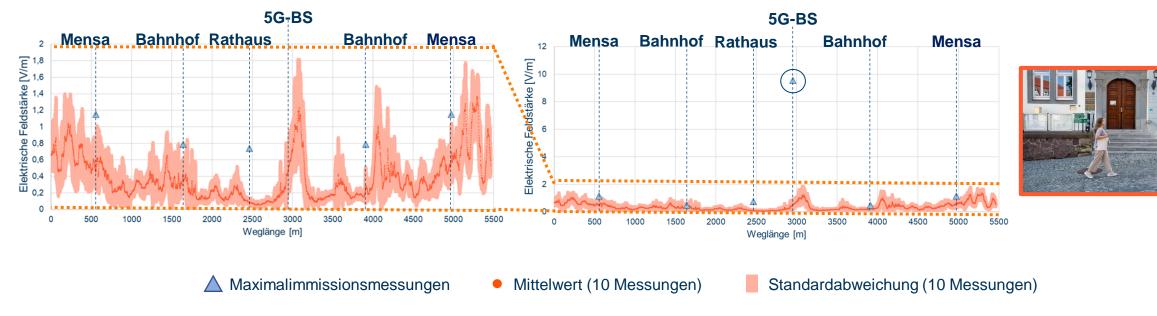
- Durchführung von Immissionsmessungen im Stadtgebiet Ilmenau
- Erarbeitung einer kommunalen Handreichung zu strahlenschutztechnischen Aspekten im 5G-Mobilfunk

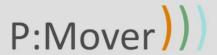



Auswahl der Messkampagnen

- Untersuchung verschiedener Alltagsszenarien und Orte (ÖPNV, Campus, Stadtzentrum, 5G-Mobilfunkbasisstationen)
- Nicht-stationäre Routenmessungen und stationäre Langzeitmessungen
- Bewertung der theoretischen Maximalimmission im Vergleich zur lastabhängigen Momentanimmission
- Vergleichsmessungen inner- und außerhalb verschiedener Fahrzeuge:
 - Konventionelle Busse (nicht-automatisiert)
 - automatisiert Level 2 (CAMIL)

automatisiert Level 4-fähig (P:Mover)

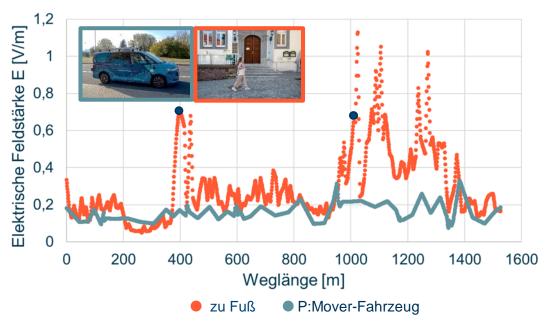


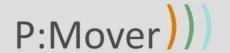


Mobilfunkimmission entlang der Messroute zu Fuß (Campus + Stadtkern)

- Systematische Analyse der Route:
 10 reproduzierbare Messungen während eines Jahres an verschiedenen Tagen und Uhrzeiten
- Maximale Grenzwertausschöpfung der gemittelten Momentanimmission: 0,7%
- Theoretische Maximalimmission an der 5G Basisstation liegt deutlich über der tatsächlichen Momentanimmission (max. Grenzwertausschöpfung: 16,0%)
 - → Deutlich unterhalb der geltenden Immissionsschutzgrenzwerte (26. BlmSchV)

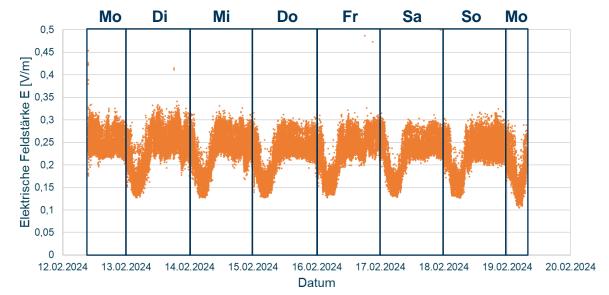
BImSchV: Bundesimmissionsschutzverordnung



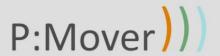

Gesamtimmission innerhalb und außerhalb des P:Mover-Fahrzeugs

1000 m (85% der Gesamtimmission Downlink außerhalb des P:Mover-Fahrzeugs)

- Dämpfung der Downlink-Immissionen innerhalb des Fahrzeugs ca. 7 dB (Faktor 5)
- Höhere Uplink- (+11 dB, Faktor 12) und ISM-Immission (+6 dB, Faktor 4) innerhalb des Fahrzeugs im Vergleich zu außen
- Grenzwertausschöpfung der Momentanimmission (Mittelwert über Weglänge):
 0,3% innerhalb und 0,6% außerhalb des Fahrzeugs
 - → Deutlich unterhalb der geltenden Immissionsschutzgrenzwerte (26. BlmSchV)



Bewertung der elektromagnetischen Umweltverträglichkeit


Langzeitimmissionsmessung auf der Litfaßsäule am Bahnhof

- Ausgeprägte tageszeitliche Schwankungen der Momentanimmission an allen Tagen der Woche
 - Minimum täglich ca. zwischen 1 Uhr und 5 Uhr morgens (kein Zugverkehr zwischen 00:57 Uhr und 04:36 Uhr)
- Der größte Anteil der Immission entfällt auf Mobilfunk im Downlink (ca. 60%)
- Maximale Grenzwertausschöpfung der gemittelten Momentanimmission: 0,4%
 → Deutlich unterhalb der geltenden Immissionsschutzgrenzwerte (26. BlmSchV)

ThlMo – Forschungoffensive "Digitale Mobilität"

Rahmenkonzept "Mobilität in ländlichen Räumen"

- Automatisiertes und vernetztes Fahren
 - Umfelderkennung, Routenplanung und Überwachung automatisierter Fahrfunktionen erfolgt im Fahrzeug
 - Teilweise Auslagerung der Rechentechnik nur durch latenzarme 5G-Versorgung realisierbar
 - → Weiterer Ausbau des 5G-Mobilfunks notwendig!
- Elektromagnetische Umweltverträglichkeit
 - Immissions-Monitoring begleitend zum weiteren Ausbau des Mobilfunknetzes
 - Bewertung von Strahlenschutz-Aspekten beim zukünftigen 6G-Mobilfunkstandard
- → Neues F&E-Verbundprojekt (BMBF): "MOVEwell" Interkommunaler Mobilitätsverbund für werthaltige ländliche Lebensräume in Mittel-/Ostthüringen

werthaltige ländliche Lebensräume

Projektlaufzeit 09/2024 – 08/2029 Fördervolumen 4.6 MEUR

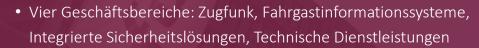
Vielen Dank für Ihre Aufmerksamkeit!

Gefördert durch:

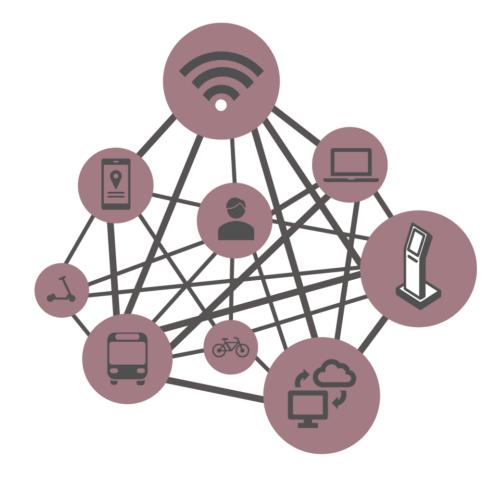
aufgrund eines Beschlusses des Deutschen Bundestages

P:Mover))



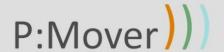

Funkwerk Systems GmbH (Betriebsteile Kölleda und Karlsfeld)

- Ca. 160 Mio. € Umsatz mit rd. 600 Mitarbeitenden (2023)
- Vorstand: Kerstin Schreiber, Dr. Falk Herrmann



Projektteil Funkwerk Karlsfeld: sensorgestützte Fahrgastinformation

- effizientere, intelligentere und flexiblere Mobilität
- 5G-basiertes verteiltes System aus Info-Stelen und Web-Diensten (inkl. Kommunikation mit Fahrzeugen)
- flexible und erweiterbare Plattform
- Informationen zu aktuellen Fahrtmöglichkeiten (ÖPNV/Bahn)
- zuverlässige Verkehrsprognose
- nahtloser Übergang zwischen verschiedenen Verkehrsmitteln
- intelligente Reiseinformations- und Smart-City-Applikationen
- Möglichkeit der Einbindung von Dritt-Applikationen



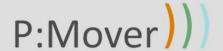
Projektteil Funkwerk Karlsfeld: Hardware

- 2 x 21,5 Zoll TFT Stele ds (2 Standorte: Universität, Busbahnhof)
- 1 x 21,5 Zoll Monitor (im Labor)
- Sockel / Monitor
- Text to Speech
- 4G/5G Modem
- Sensoring zur Überwachung von Temperatur, Feuchtigkeit,
 Scheibenbruch, Türöffnung, Helligkeit, Fehlerkennung

11:33 Abfahrten

Platz

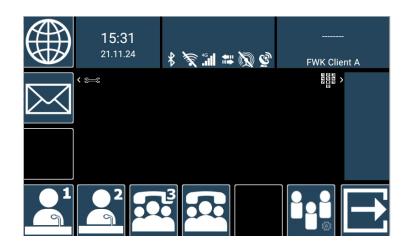
Platz

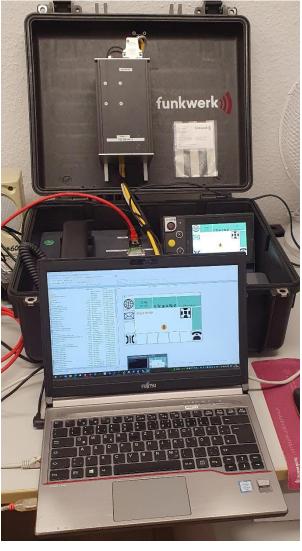

Ilmenau, Gustav-Kir

Ilmenau, Neuhäuser We Ilmenau, Gustav-Kiro

Projektteil Funkwerk Karlsfeld: Smart Mobility Software

- Cloud basierend
- automatische Datenübernahme
- Übernahme Echtzeitdaten
- Integration zus. Schnittstellen
- Fahrplanübernahme
- Layoutmanager (zusätzliche Dateien)
- Notice Modul (Sonderinformationen)
- skalierbar
- Benutzerverwaltung, Geräteverwaltung, Inhaltsverwaltung,
 Datenintegration, Geräteüberwachung



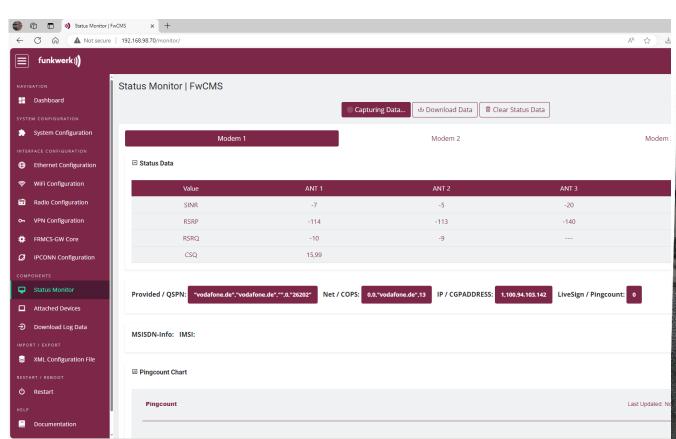


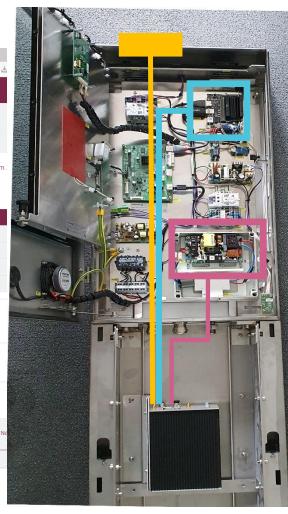


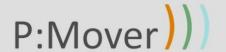
Projektteil Funkwerk Kölleda: Projektziele

- Tests und Praxiserprobung eines in der Info-Stele fest verbauten Prototyps eines Funkmoduls bzgl. Multipath-Routing
- Tests und Praxiserprobung von bereits entwickelten 5G-fähigen Funkmodulen in Labor- und Netzinfrastrukturen sowie auf Fahrzeugen bzgl. MCX Communication:
 - Mission Critical Funktionalität (Voice)

Projektteil Funkwerk Kölleda: Anbindung der P:MOVER Stele via 5G (TEIL 1/2)

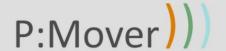






Projektteil Funkwerk Kölleda: Anbindung der P:MOVER Stele via 5G (TEIL 2/2)

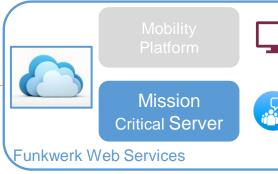
- Einbau des Gateways in den Sockel der Stele
- Stromversorgung über das eingebaute Netzteil
- Web-Konfiguration
- Status-Monitor für Verbindungsdaten
- Integrierte Firewall
- Entwickelt nach EN 50155
- 2x 1Gbit/s Ethernet
- Audio Interface, RS422 Support und GNSS Unterstützung


Projektteil Funkwerk Kölleda: Field Tests der Displays

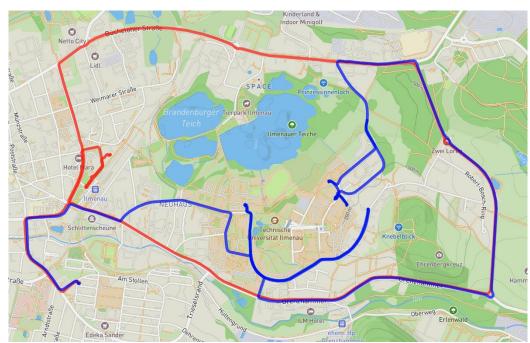
Field Tests

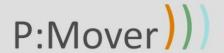
- Errichtung der Anzeiger an den festgelegten Positionen
- Inbetriebnahme über die 5G Funkverbindung mittels Pre-Paid SIM Karte
- Verbindung zur Projektdatenbank
- Überprüfung der Feldstärke zur Funkversorgung

SIM card		Connection		Data transmission		Cell info	
SIM card slot in use	SIM 1	Operator	vodafone.de	Carrier aggregation	Active	Cell ID	771560
SIM card state	Inserted	Operator state	Registered, home	Bandwidth	20 MHz / 10 MHz	TAC	4360
Provider	vodafone.de	Data connection state	Connected	Connected band	LTE B1 / LTE B20	Physical cell ID	273 / 24
IMSI	262022613794530	Connection stage	Setup complete	RSSI (dBm)	-59 Excellent	EARFCN	100 / 630
ICCID	89492026246003461474	Network type	5G (NSA); VoLTE	Data received	85.2 KB	Mobile country code	26
				Data sent	59.08 KB	Mobile network code	1
Bands							
	EARFCN	Bandwidth	Physical cell	ID RSRP	RSRQ		SINR
Bands Name	EARFCN 100	Bandwidth 20 MHz	Physical cell	ID RSRP		Excellent	SINR 12 Fair to poor



Projektteil Funkwerk Kölleda: Drive Test für die Sprachanwendung





- Verbindung zum Funkwerk Cloud Server
- Ein Sprechfunkgerät statisch im Funkwerk Büro Ilmenau
- Sprachverbindung zwischen zwei Geräten Stabilität und Sprachqualität
- Zweites Sprechfunkgerät im Fahrzeug
- Funkwerk verwendete eigenes Fahrzeug, da das P:Mover Projektfahrzeug nicht zur Verfügung stand
- Test der Abdeckung in Ilmenau und auf dem Campus
- Keine Sprachunterbrechungen

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Thomas Rohn

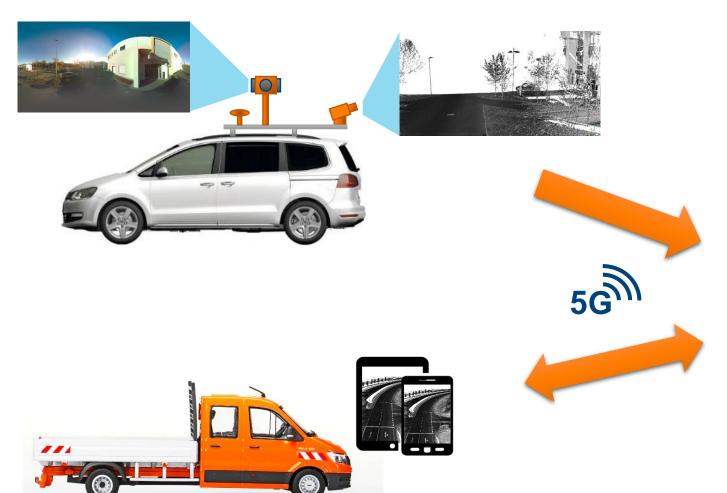
Leiter Vertrieb und Projektmanagement

+49 8131 9075-462

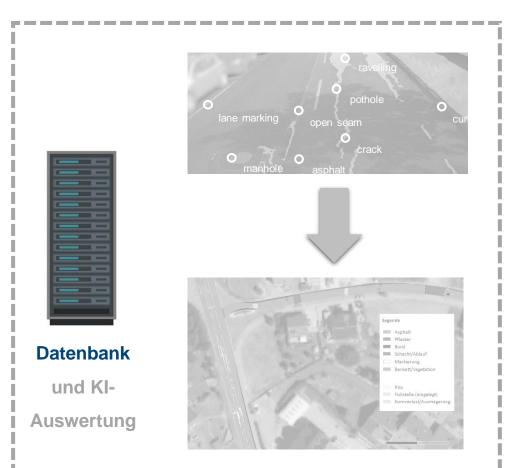
thomas.rohn@funkwerk.com

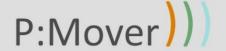
funkwerk.com

Funkwerk Systems GmbH Im Funkwerk 5 | 99625 Kölleda



Überblick




Überblick

Mobiles Erfassungssystem

- 3D Straßen- und Straßenraumerfassung
- 3D Oberflächenscan und Automotive Test Tracks
- Kamera- und scannerbasierte Zustands- und Bestandsdatenerfassung in Kommunen

Ausrüstung

- Lokalisation: Applanix POS LV
- **3D Erfassung:** Laserscanner ZF 9020
- Bilderfassung: Panoramakamera SmartDelta PentaPano
- Datenübertragung: 5G Technologie

Mobiles Erfassungssystem

Modifizierte SmartDelta PentaPano

- 2 integrierte Rechner
- Kameramodule von Teledyne (Sony Sensoren)
- Objektive mit weiterem Öffnungswinkel (48° unter dem Horizont)

Mobiles Erfassungssystem

Laserscanner Z+F PROFILER 9020

- 267 Profile / Sek
- 1 Mio. (2 Mio) Punkte / Sek
- 0.2 mm Genauigkeit (0.7 mm (1 Sigma) auf Referenzbalken)
- Reichweite 182 m (55m auf ebener Oberfläche und flachem Winkel)

Mobiles Erfassungssystem

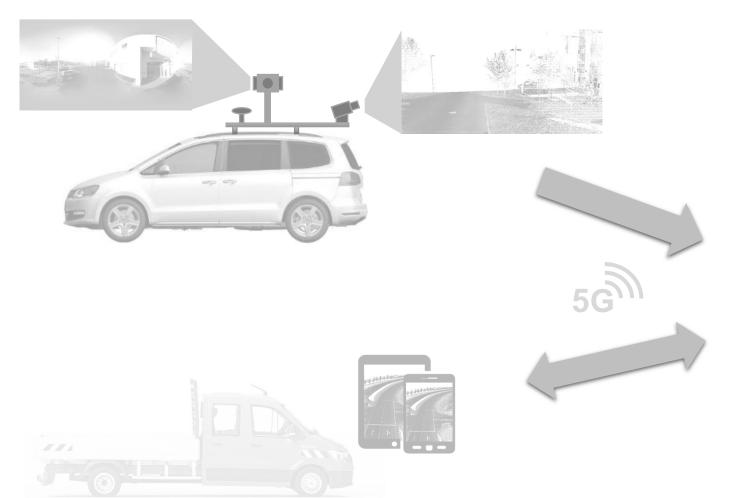
Laserscanner

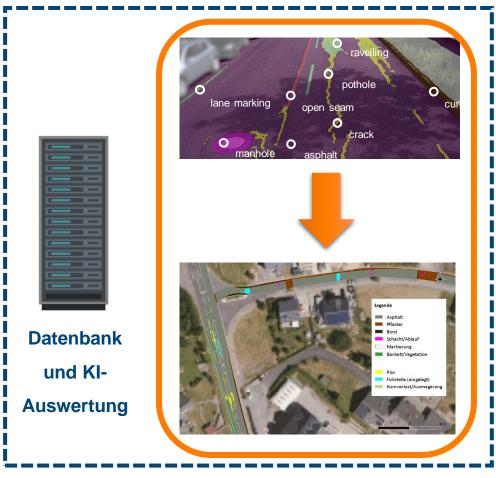
- 1 Mio Punkte/s
- Ca. 9 MB/s

Panoramakamera

- 141 MPix Bilder (komprimiert gespeichert)
- Auslösung alle 5 Meter
 - \rightarrow 30 km/h ~ 66 MB/s
 - \rightarrow 50 km/h ~ 110 MB/s

Nutzung von Standzeiten und Überführungsfahrten



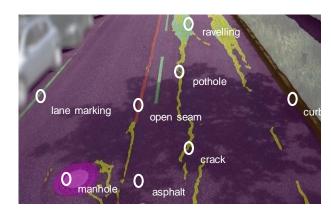




Überblick

Automatisierte Datenauswertung

- Einsatz KI für die Verarbeitung der erfassten Bild- und Punktwolkendaten
- KI Methoden bei L+P bereits im Einsatz
- Fokus im Projekt auf Auswertung der Frontkamerabilder und der 3D-Daten des Z+F Scanners

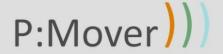


Anonymisierung

KI-Auswertung

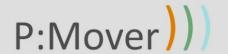
Panoramakamerabilder

Z+F Laserscannerdaten



Auswertung von Bilddaten - Einzelbildbasis





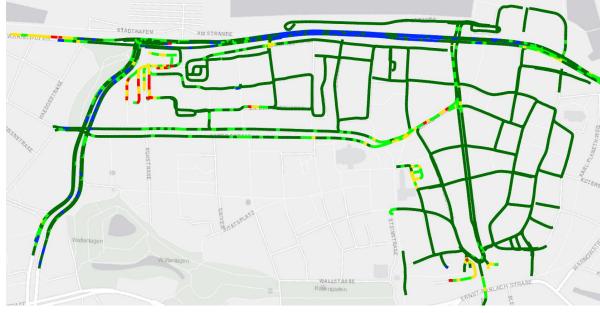
Auswertung von Bilddaten - Einzelbildbasis

ILMENAU

Auswertung von Bilddaten - Messfahrtebene

Detektion aus Bilddaten

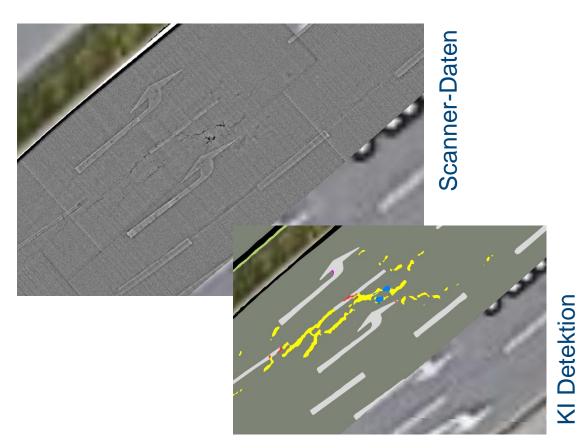
Detektion aus Laserscannerdaten

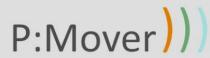



Auswertung von Bilddaten - Messfahrtebene

Detektion aus Bilddaten

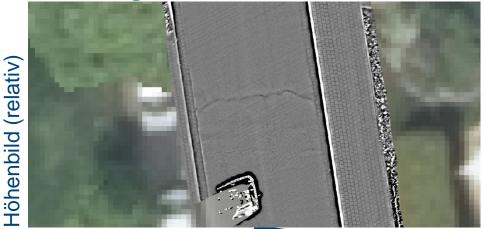
Detektion aus Laserscannerdaten



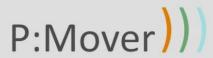

Auswertung von Bilddaten

- Nicht alle Schäden aus Umgebungsbildern allein erkennbar

Frontbild

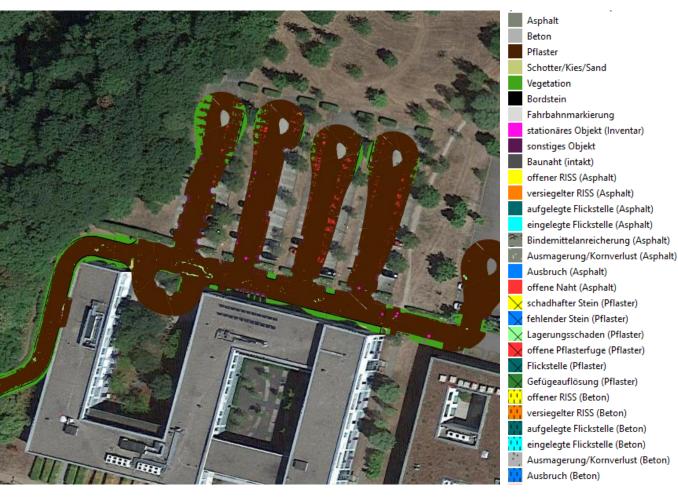


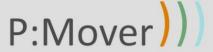
Auswertung von Laserscannerdaten



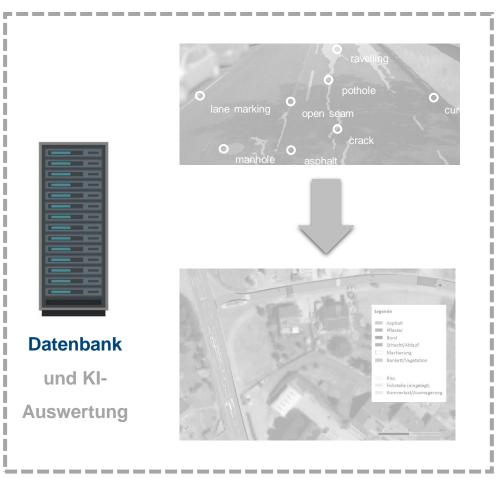
Bei Fahrgeschwindigkeiten < 30 km/h
ermöglichen erfassten 3D-Daten sogar
automatisierte Schadstellendetektion analog
Fraunhofer PPS-Scanner

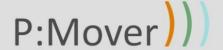
dunkelgrün) Kornausbruch gelb, KI-Detektion



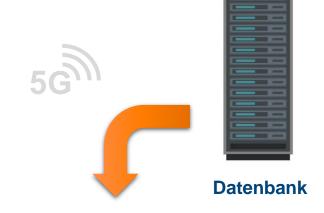


Auswertung von Laserscannerdaten

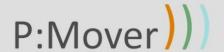




Überblick







Datendarstellung auf mobilem Endgerät

- Daten über Schäden und Straßenzustand sind in **Postgres Datenbank** erfasst
- Zugriff auf Datenbank mit mobilem Endgerät
- Nutzung des Google ARCore Frameworks
 - Bewegungserkennung, Tracking von Merkmalen im Bild
 - Erkennung von Ebenen
 - Lokalisation über Merkmalspunkte in der Welt
- Qualität sehr stark abhängig von Lokalisation
 - Nutzung von Google Visual Positioning Service (VPS)
 - Nutzung von externem RTK-GPS Empfänger

